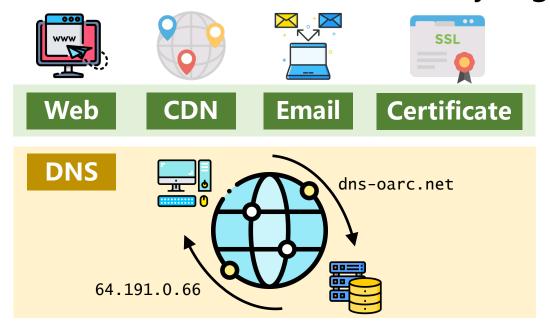


NDSS Symposium 2023

Ghost Domain Reloaded: Vulnerable Links in Domain Name Delegation and Revocation

Xiang Li, Baojun Liu, Xuesong Bai, Mingming Zhang, Qifan Zhang, Zhou Li, Haixin Duan, and Qi Li

Presenter: Xiang Li, Tsinghua University
March 1st, 2023



Domain Name

➤ Domain name system (DNS)

- ➤ Entry point of many Internet activities
- ➤ Security guarantee of multiple application services
- ➤ Domain names are widely registered

Domain Name Abuse

> Also abused by criminal activities

➤ Botnet, phishing, malware distribution

Cited from bleepingcomputer.com

Malvertising Worms **Fileless** malware **Rootkits** Ransomware **Bots or botnets Adware**

Cited from scmp.com

Domain Name Abuse

- >Also abused by criminal activities
 - ➤ Botnet, phishing, malware distribution
- >ICANN Domain abuse activity reporting (DAAR)
 - ➤In January 2023
 - ➤ Check 215,555,155 domain names within 1,154 gTLDs

659,813 domains showing security threats

Domain Name Revocation

> Fighting against malicious domain names

> Mechanism

- ➤ Domain name revocation
- ➤ Operated by registries or registrars
- > Deleting or changing domain name registration (delegation)

> Result

>Domains are no longer controlled by original registrants/attackers

Domain Name Revocation

> Domain name seizure activity

- ➤ Best security practice
- ➤ Widely adopted

Microsoft seizes Chinese dot-org to kill Nitol bot army

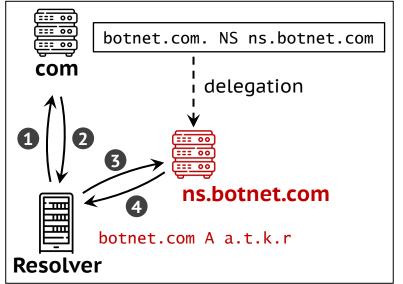
Takedown after infected new computers sold to victims

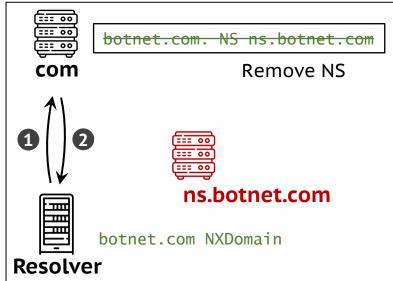
John Leyden

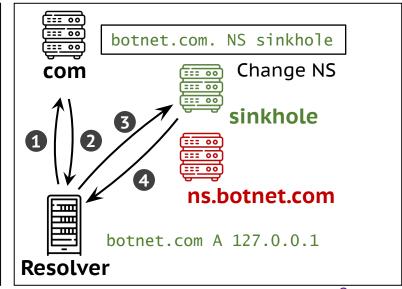
Thu 13 Sep 2012 // 15:01 UTC

Microsoft has disrupted the emerging Nitol botnet - and more than 500 additional strains of malware - by taking control of a rogue dot-org website. The takedown is the latest in Microsoft's war against armies of hacker-controlled PCs.

Cited from intelligentciso.com


How does domain name revocation work on domain name registration (delegation)?

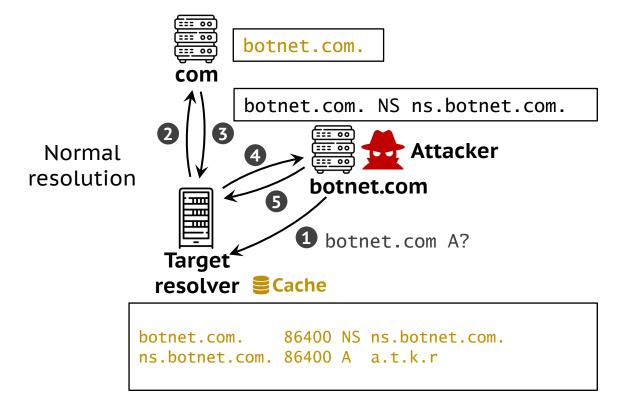

It is the reverse process of delegation.

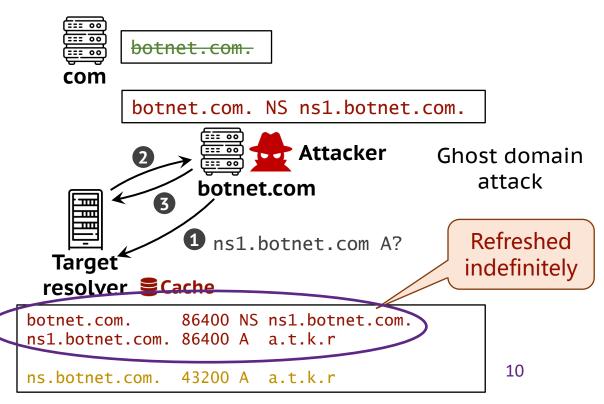

Domain Name Revocation

- **≻Normal resolution**
- **≻**Revocation
 - ➤ Domain delisting
 - ➤ Domain sinkholing

Normal resolution Domain delisting Domain sinkholing

Does domain name revocation function as desired?


No. Ghost domain broke this guarantee.


Ghost Domain

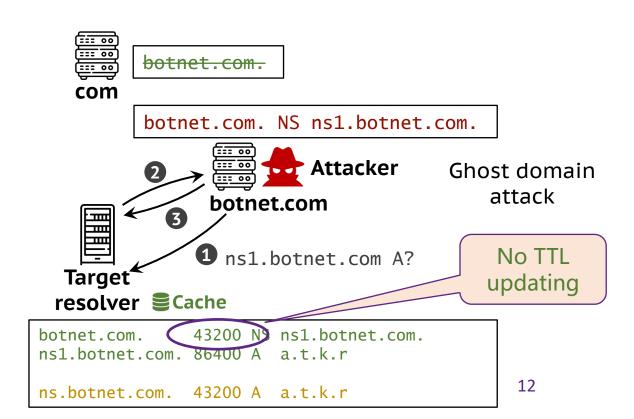
≻Ghost domain attack

- ➤ Proposed in NDSS 2012 by our NISL lab
- > Making revoked domain names still resolvable on resolvers

With ghost domain, even after revocation, malicious domains can still be resolvable.

Attackers can use it to evade domain take-down or domain expiration.

Ghost Domain


>Vulnerable software

➤ Not all software: BIND, PowerDNS, etc.

> Mitigation

>TTL field cannot be prolonged

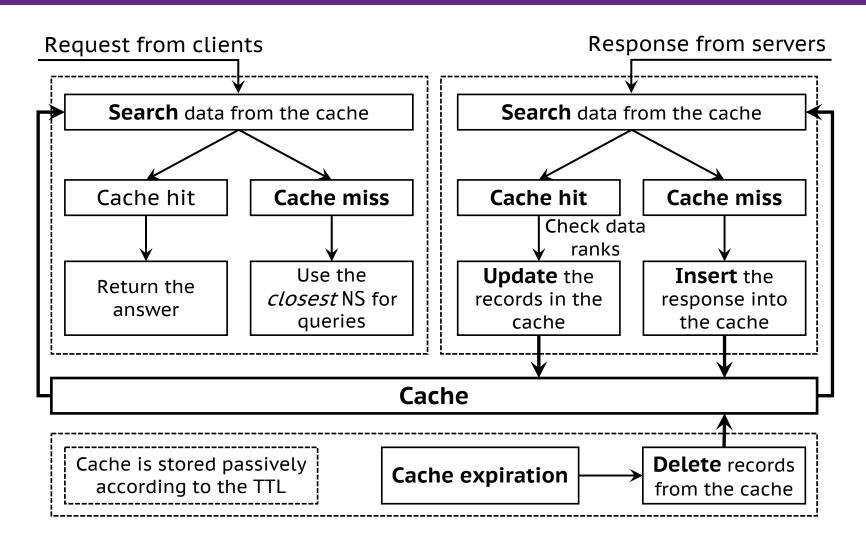
DNS Vendor	Version	Vulnerable?	
BIND	9.8.0-P4	Yes	
DJB dnscache	1.05	Yes	
Unbound	1.4.11	No	
	1.4.7	Yes	
PowerDNS	Recursor 3.3	Yes	
MaraDNS	Deadwood-3.0.03	No	
	Deadwood-2.3.05	No	
Microsoft DNS	Windows Server 2008 R2	No	
WHOIOSOIL DIVIS	Windows Server 2008	Yes	

10 years later, does domain name revocation work as desired after fixing ghost domain?

No. Phoenix domain still breaks this guarantee with a broader attack surface.

≻What is phoenix domain

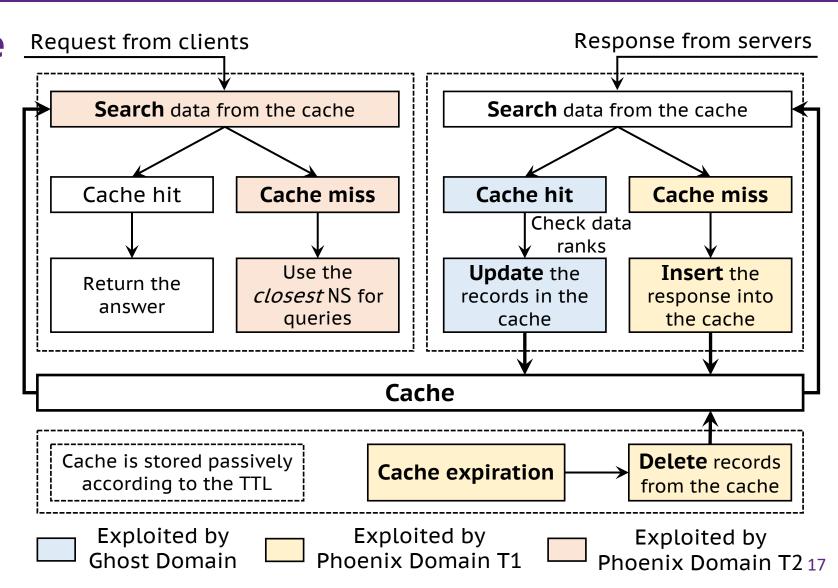
- ➤ Proposed by our NISL lab too
- > Also making revoked domain names still resolvable on resolvers
- >Two new vulnerabilities in protocols or implementations
- ➤ Two variations (T1 and T2)
- ➤ Affecting all DNS implementations


Why is domain name revocation still vulnerable?

We find that the entire attack surface remains unclear now.

DNS Cache Operations

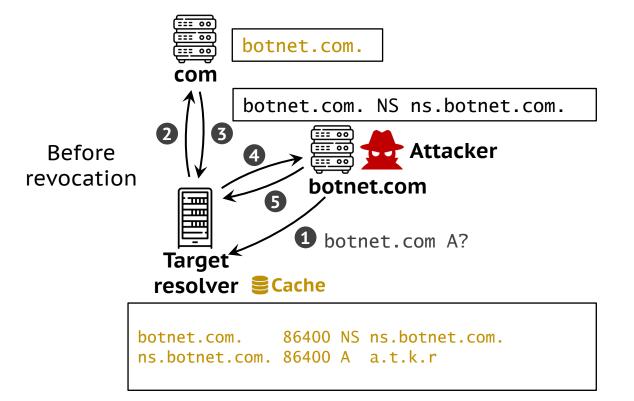
≻Summary

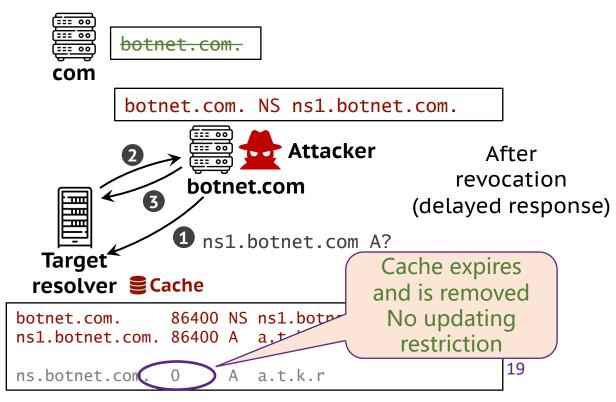


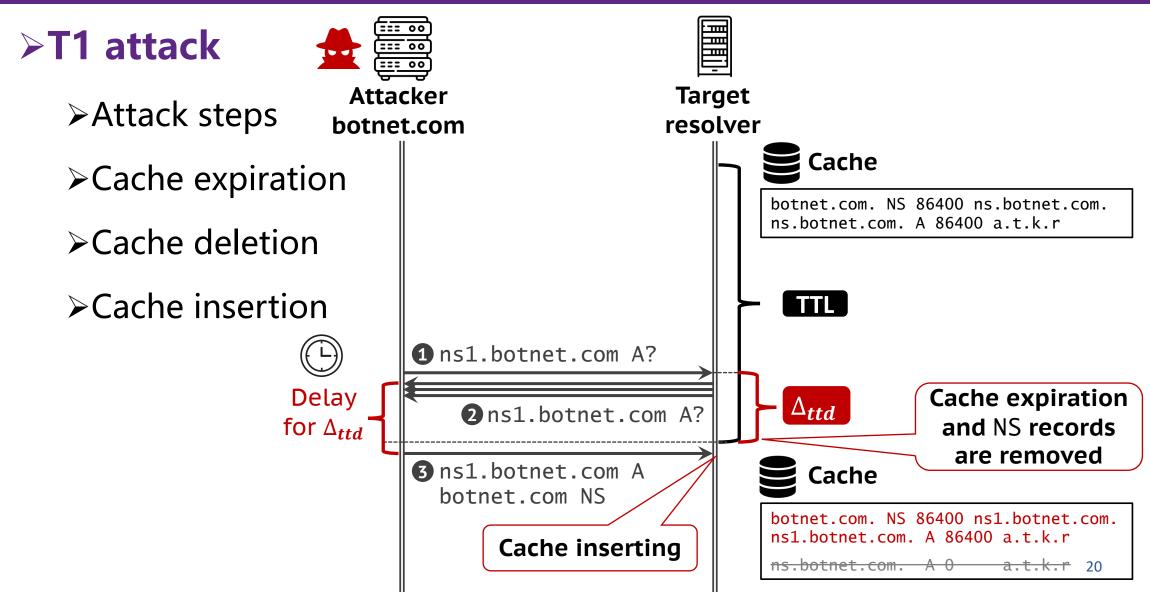
DNS Cache Operations

>Attack Surface

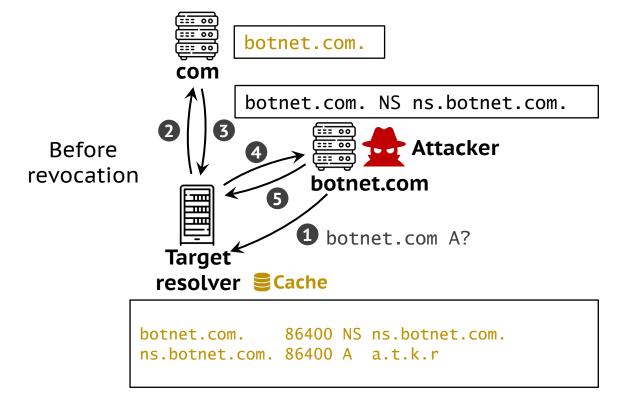
- **>**Updating
- **≻**Insertion
- **>** Searching


How does phoenix domain work?


Two variations, two ways.


≻T1 attack

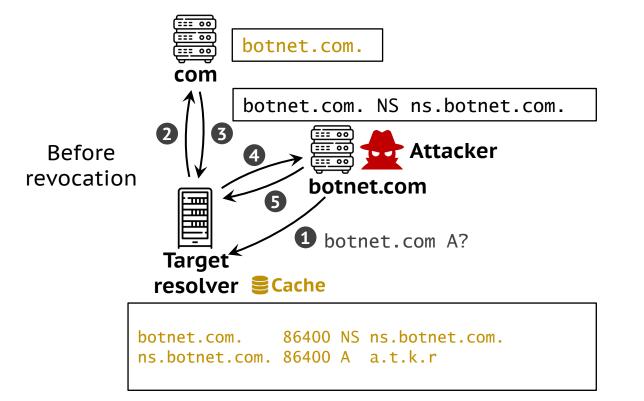
- > Exploiting vulnerable cache insertion implementations
- Inserting new NS records when the old is about to expire



≻T2 attack

- > Exploiting vulnerable cache searching operations
- ➤Inserting new NS records of subdomains


```
botnet.com.
   com
           s.botnet.com. NS ns.s.botnet.com.
                       Attacker
                                               After
                                            revocation
                 botnet.com
                                      (iterative delegation)
               1 s.botnet.com A?
  Target<sup>1</sup>
 resolver Cache
s.botnet.com.
                86400 NS ns.s.botnet.com.
ns.s.botnet.com. 86400 A a.t.k.r
botnet.com.
                43200 NS ns.botnet.com.
```


43200 A a.t.k.r


ns.botnet.com.

≻T2 attack

- > Exploiting vulnerable cache searching operations
- ➤Inserting <u>new NS records of subdomains</u>

Vulnerable Software

- > Phoenix domain T1
 - ➤BIND9, Knot, Unbound, and Technitium
- **≻Phoenix domain T2**
 - ➤ All tested 8 software are vulnerable (7 confirmed, 9 CVEs)

unbound CVE-2022-30250 CVE-2022-30251

CVE-2022-30252 CVE-2022-30254

MaraDNS CVE-2022-30256 CVE-2022-30257

CVE-2022-30258 CVE-2022-30698

CVE-2022-30699

POWERDNS

Simple DNS Plus Technitium DNS Server

Vulnerable Public Resolvers

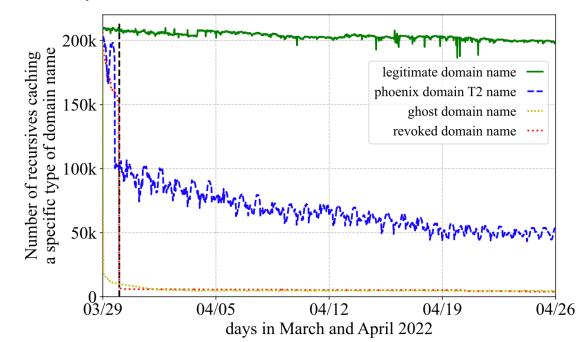
▶ Phoenix domain T1 and/or T2

- ➤ We test 41 public resolver vendors
- ► All resolvers are vulnerable to T1 and/or T2
- ➤ Such as Google, Cloudflare, Akamai, AdGuard, etc. (15 confirmed)

Vulnerable Open Resolvers

> Recursive resolver list

- >Through scanning, we collected 1.2M resolvers
- >210k recursive resolvers are selected


Region	Number	%	ASN	Number	%
USA	43,034	20.5%	4837	9,825	4.7%
China	25,152	12.0%	4134	5,988	2.9%
Russia	22,802	10.9%	3462	5,864	2.8%
Japan	13,421	6.4%	4713	5,134	2.4%
France	12,801	6.1%	8866	4,884	2.3%
Turkey	8,389	4.0%	9121	4,779	2.3%
Brazil	7,128	3.4%	16276	4,355	2.1%
Sweden	7,026	3.3%	209	3,937	1.9%
Taiwan	6,869	3.3%	3215	3,735	1.8%
Ukraine	6,572	3.1%	12389	3,485	1.7%
Total 218 regions Total 11,274 ASes					Ses

Experiments for T2

>Long-term experiments

- ➤ Check how long phoenix domain can be alive
- >After one week, 40% are vulnerable
- ➤ After one month, 25% are vulnerable

Mitigation

Mitigation

- >6 approaches
- ➤ Discussing with RFC editors
- ➤ For example,
- ➤ M1: when NS RRs expire, querying upstream for NS
- ➤ M2: trust NS from the parent more than the child

≻M3: use small TTL values

Mitigation	T1	T2
M1: Re-validating delegation information	•	•
M2: Updating delegation data by parent-centric policies.	•	0
M3: Aligning the cache use-and-check operations	•	0
M4: Ignoring unsolicited DNS records	•	•
M5: Scrutinizing domain names with over many labels	0	•
M6: Restricting the maximum cache TTL	0	•
●: Fully valid. ●: Partially valid. ○: Not valid.		

Delegation Revalidation by DNS Resolvers draft-ietf-dnsop-ns-revalidation-03 (RFC draft)

Conclusion

- > New phoenix domain attacks
- >Two novel vulnerabilities
 - **≻T1** (poor implementations)
 - >T2 (de facto protocol standards)
- >Comprehensive influence
- > Detailed mitigation approaches
 - ➤Our paper is added into an RFC draft

Phoenix Domain Attack: Vulnerable Links in Domain Name Delegation and Revocation

Speaker: Xiang Li

Track: Network Security
Format: 30-Minute Briefings

Black Hat Asia 2023

>Well acknowledged by the community

Thanks for listening! Any question?

Xiang Li, Tsinghua University x-l19@mails.tsinghua.edu.cn

