

DNSBomb: A New Practical-and-Powerful Pulsing DoS Attack Exploiting DNS Queries-and-Responses

Xiang Li, Dashuai Wu, Haixin Duan[™], and Qi Li[™]

Presenter: Xiang Li, Tsinghua University

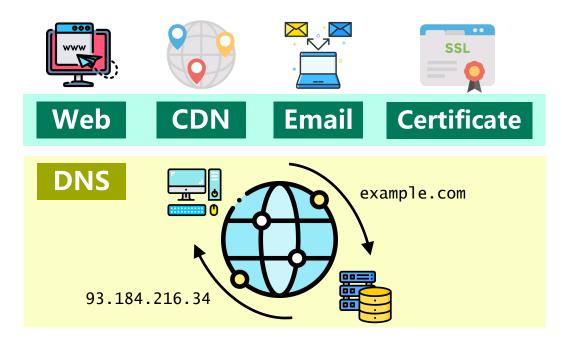
May 2024

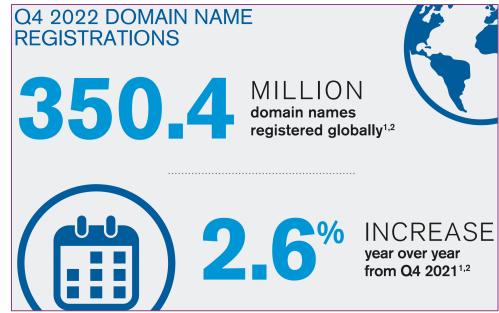
Attack Impact

Our DNSBomb attack could be exploited to **DoS arbitrary targets with pulsing traffic.**

The bandwidth amplification factor could be >20,000x.

DNSBomb





Domain Name System (DNS)

> DNS Overview

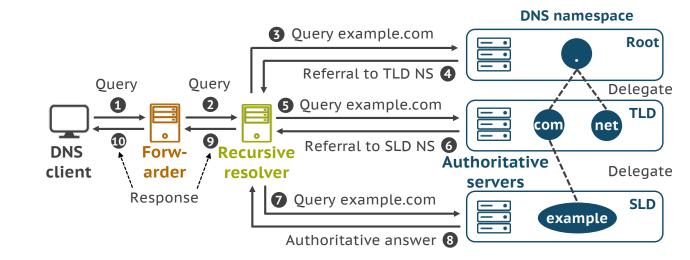
- □ Translating domain names to IP addresses
- □ Entry point of many Internet activities
- Domain names are widely registered

DNSBomb

verisign.com/dnib

Domain Name System (DNS)

Hierarchical Name Space

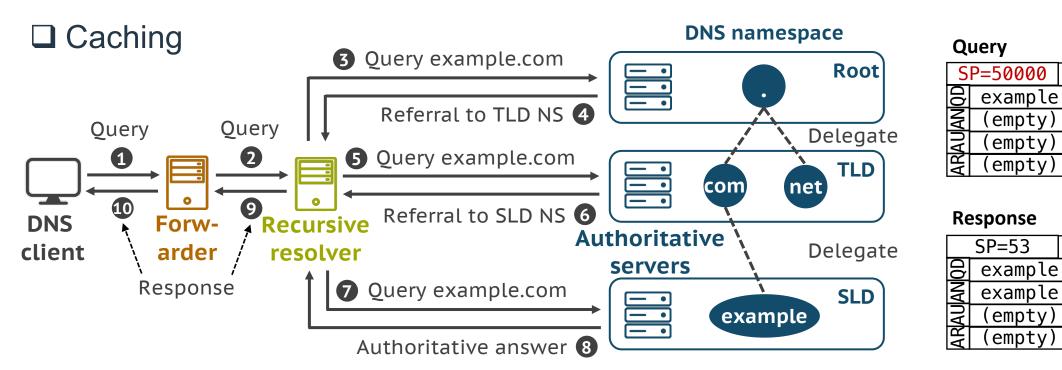

- \Box Authoritative zones: root, TLD, SLD \rightarrow DNS records
- \Box Domain delegation \rightarrow Domain registration

> Multiple Resolver Roles

- □ Client, forwarder, recursive, authoritative
- **Caching**

> Iterative Resolution Process

□ Client-server style



Domain Name System (DNS)

DNS Resolution Process

- □ Primarily over UDP
- □ Iterative and recursive

5

DNSBomb

DP=53	TXID=1001
com A?	

DP=50000 TXID=1001 example.com A? example.com A 1.1.1.1

Since DNS is the cornerstone of the Internet, enabling multiple critical services and applications,

For a long time, attackers have been attempting to carry out traffic amplification attacks through DNS.

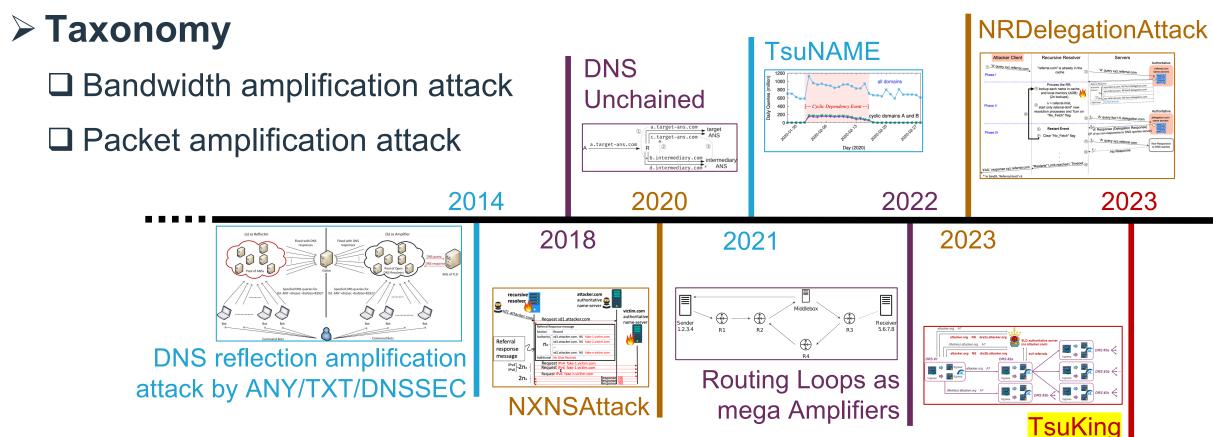
DNSBomb

Question

What is the DNS amplification attack?

Attackers exploit open DNS resolvers to flood a target with an overwhelming amount of DNS traffic.

DNSBomb



DNS Amplification Attack

> Target

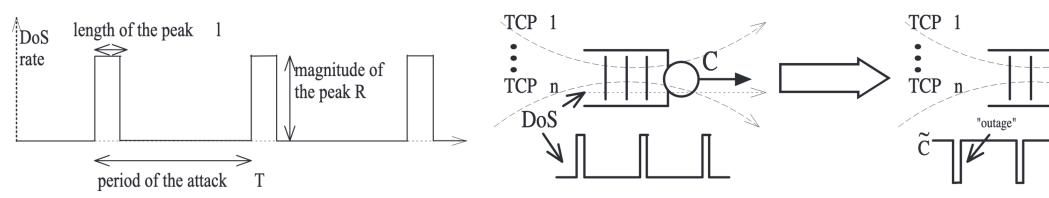
□ To flood a target with amount of DNS traffic

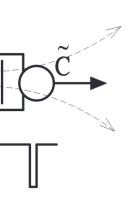
However, the traditional DNS amplification attack could be easily detected by the amount of traffic.

Researchers have proposed new amplification attacks with the hard-to-detect pulsing DoS traffic.

DNSBomb

Pulsing DoS Attack (1/4)


> Originating from SIGCOMM '03#Shrew attack


□ A low-rate TCP-targeted DoS attack

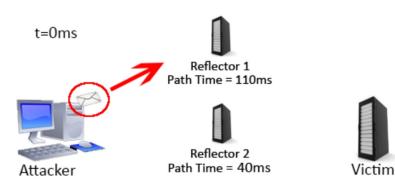
• If the period of DoS flow approximating the RTO, pkts always losing

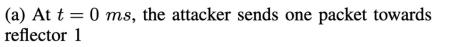
□ From 2003 - 2015, various works targeting different scenarios

- Routing, VoIP, application servers, P2P, cloud, and others
- But just in theory, **no work figuring out constructing pulsing traffic**

Pulsing DoS Attack (2/4)

Oakland '15#DNS-based Pulsing DoS Attack


□ Using latency to concentrate a low-rate flow into a high-rate pulse


t=70ms

Attacker

□ Various open resolvers worldwide

- A wide range of paths and latencies
- But, the latency is at most 1s (800ms)
- □ Amplification factor: **10x**

(b) At t = 70 ms, the first packet is about 60% along its path to the victim and the attacker sends another packet to reflector 2

Reflector 2 Path Time = 40ms

Reflector 1

Path Time = 110r

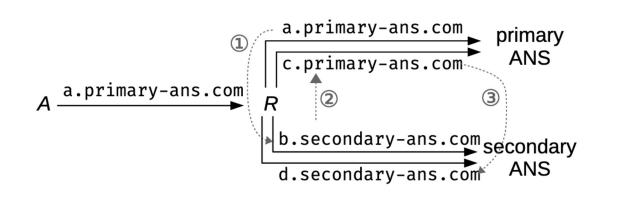
Victim

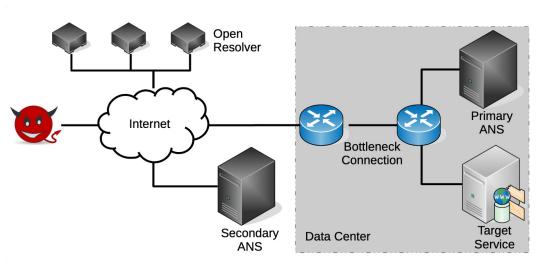
t=110ms

DNSBomb

Reflector 2 Path Time = 40ms

(c) At t = 110 ms, both packets arrive at the victim

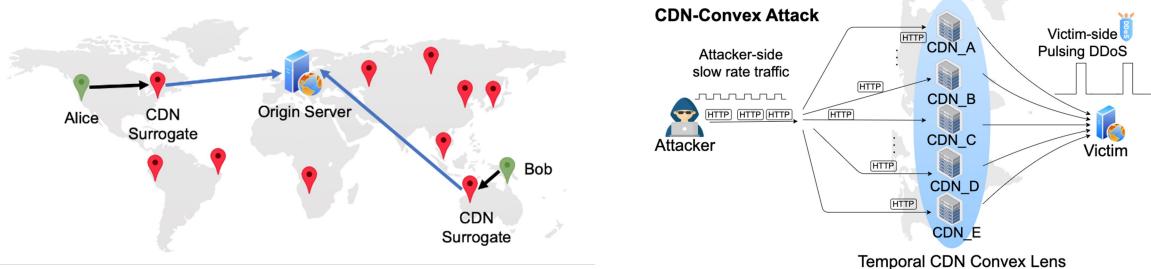

Pulsing DoS Attack (3/4)


> Woot '18#DNS-based Pulsing DoS Attack

Using latency and CNAME-chaining to construct a high-rate pulse

□ More open resolvers worldwide

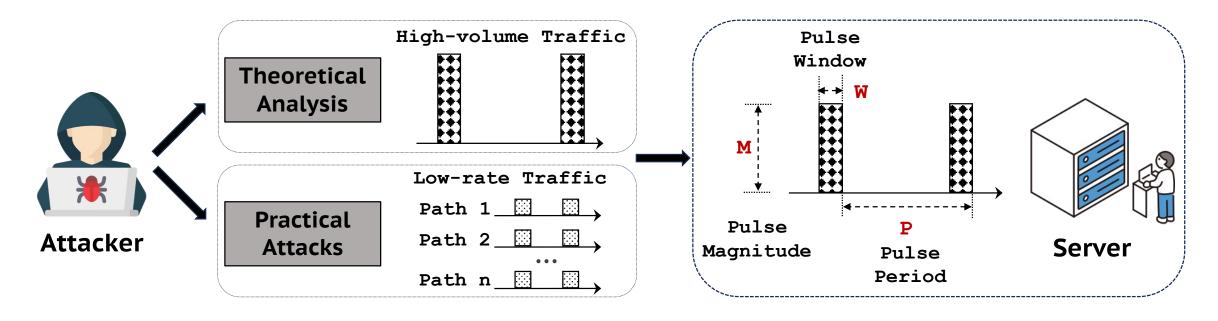
- A wide range of paths and latencies
- □ Attack the shared link: bottleneck
- □ Amplification factor: **10x**



Pulsing DoS Attack (4/4)

- Security '23#CDN-Assisted Pulsing DoS Attack
 - Using CDN and HTTP (DNS) to construct a high-rate pulse
 - □ Various CDN nodes worldwide
 - □ Three ways: latency, CDN-chaining, and DNS-holding (fragment)
 - □ Amplification factor: 1,500+ (108+MBps)

DNSBomb


Pulsing DoS Attack

> Summary of Pulsing DoS Attack

Concentrating a low-bandwidth traffic into a high-bandwidth pulsing

Cannot be detected by traditional IDS (low-rate among a while)

□ Impact is hugely causing pkts loss

However, previous pulsing DoS attacks could only yield a low amplification factor or require a large pulse period. (Not practical and powerful enough)

In this paper, we observe the capacity of DNS resolvers to concentrate traffic has never been studied in depth.

DNSBomb



DNSBomb Attack

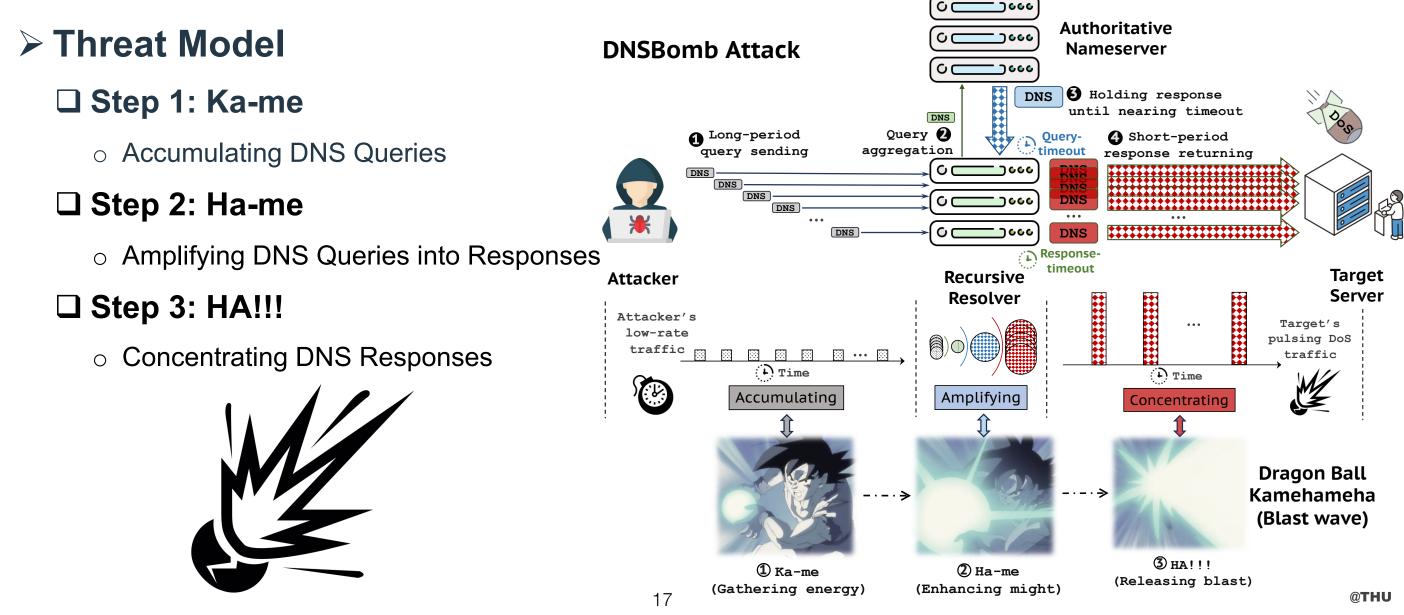
> What is the DNSBomb attack

- □ Proposed by our **NISL** lab, published at **[IEEE S&P 2024]**
- □ A new practical and powerful DNS-based pulsing DoS attack
 - Concentrating a low-rate query traffic into a high-rate response pulsing
- Exploiting three inherent DNS mechanisms (defense) to DoS (attack)
 - timeout, query aggregation, and response fast-returning

Dragon Ball Kame Hame Ha (Blast wave)

(1) Kame (Starting)

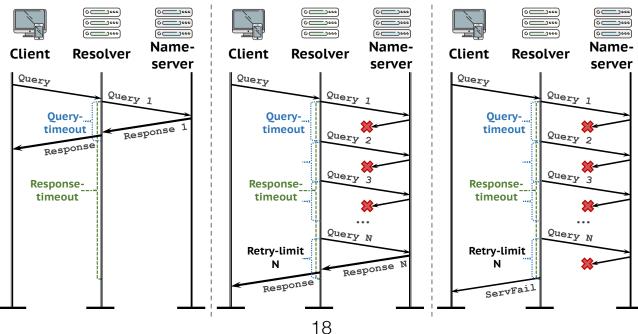
(2) Hame (Gathering energy) 16


(3) Ha (Releasing blast)

DNSBomb

DNSBomb Attack

Three Inherent DNS Mechanisms (1/3)

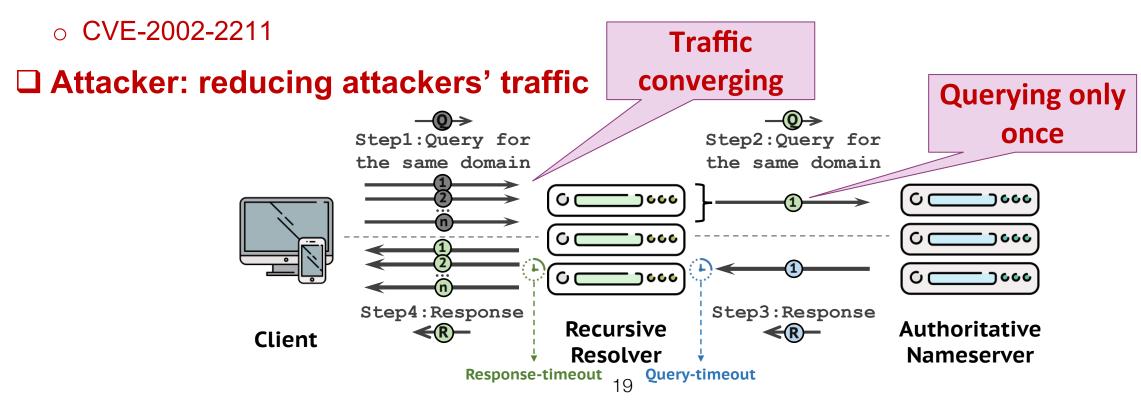

> DNS Resolution Timeout

□ Waiting for responses from the auth. until timeout (guaranteeing availability)

• Query timeout and response timeout, retry

□ Attacker: accumulating large queries at a low sending-rate

during the timeout window

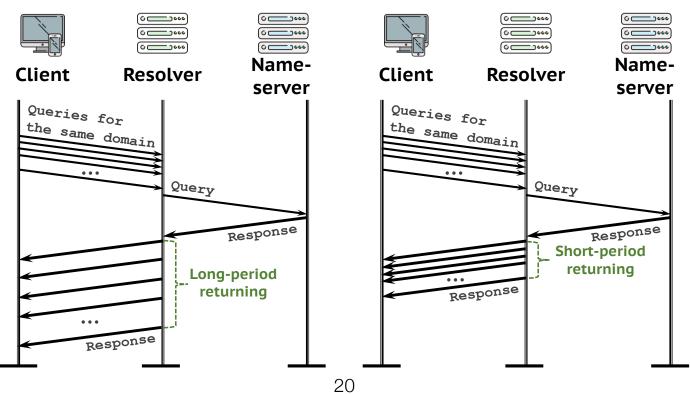

DNSBomb

Three Inherent DNS Mechanisms (2/3)

DNS Query Aggregation

- □ Issuing one resolver-query for multiple simultaneous client-requests on the same domain name (protecting security)
- Defending against DNS birthday cache poisoning attack

DNSBomb



Three Inherent DNS Mechanisms (3/3)

> DNS Response Fast-returning

- Returning responses to the client when receiving valid responses from the auth. (enhancing reliability)
- □ Attacker: concentrating traffic into the victim fast

DNSBomb

Other Techniques

Increasing the Packet Size

> Enlarging the Timeout Window

□ Using EDNS0

UDP Laver

DNS Layer

UDP Layer

DNS Laver

example.com. A

;; QUESTION SECTION:

;; ANSWER SECTION: NULL

:: AUTHORITY SECTION: NULL

;; DNS UDP MSG SIZE: ~100B

;; ADDITIONAL SECTION: EDNS0=1,232

example.com. A

;; QUESTION SECTION:

;; ANSWER SECTION: NULL

;; AUTHORITY SECTION: NULL

;; DNS UDP MSG SIZE: ~100B

;; ADDITIONAL SECTION: EDNS0=4,096

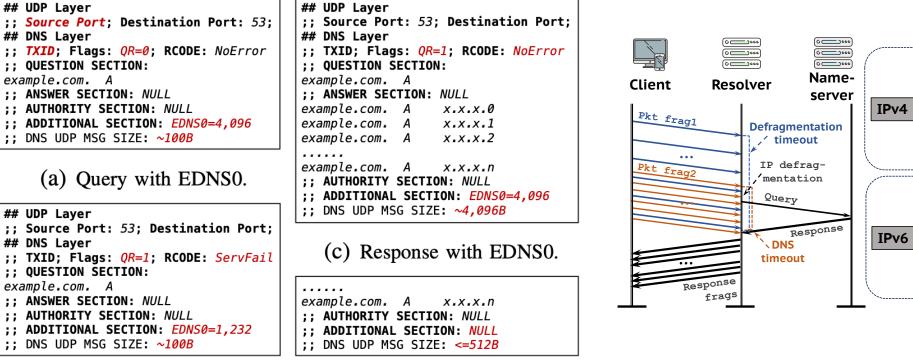
(a) Query with EDNS0.

Using defragmentation timeout

DNS Packet

Fragment1

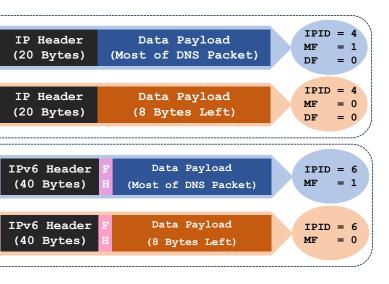
DNS Packet


Fragment2

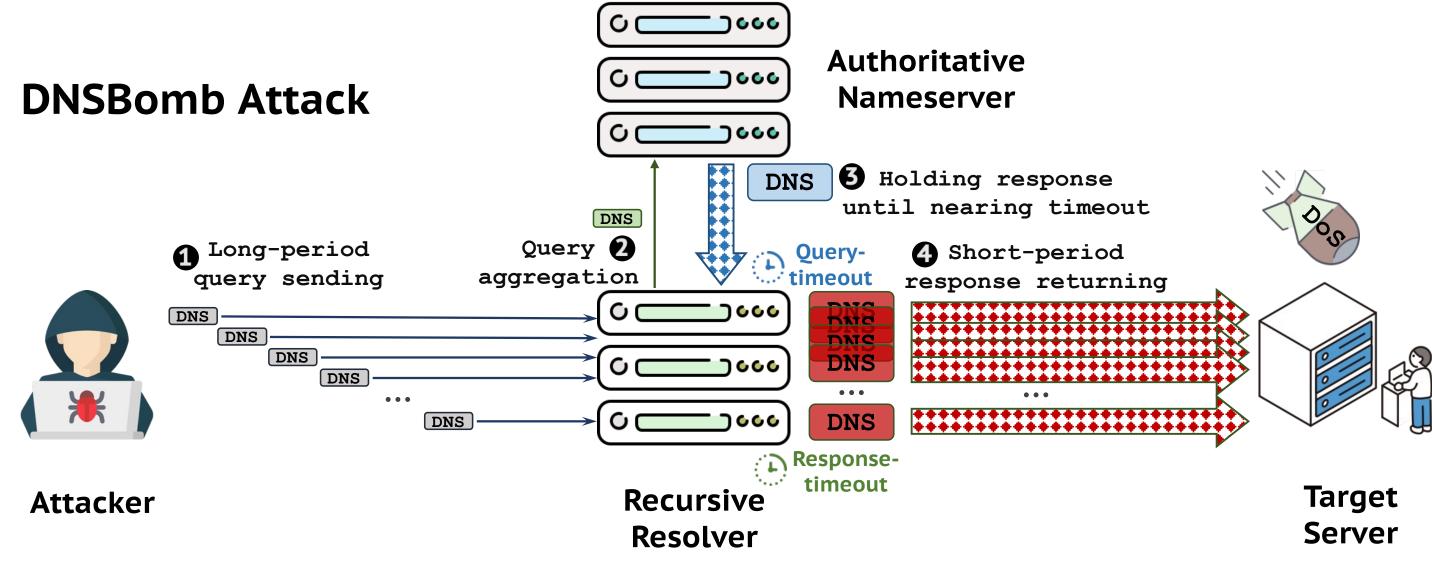
DNS Packet

Fragment1

DNS Packet

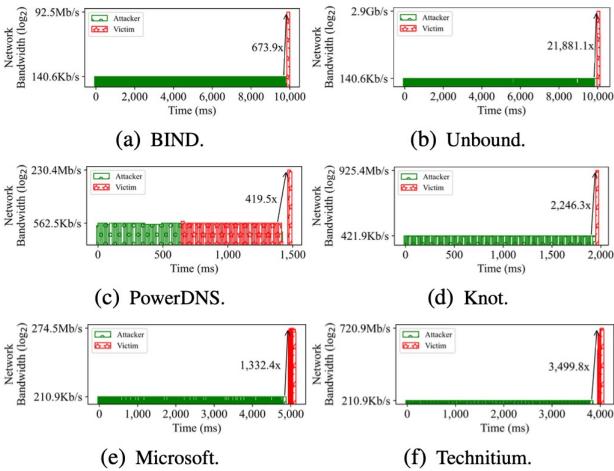

Fragment2

21


(b) ServFail Response.

(d) Response without EDNS0.

DNSBomb Attack

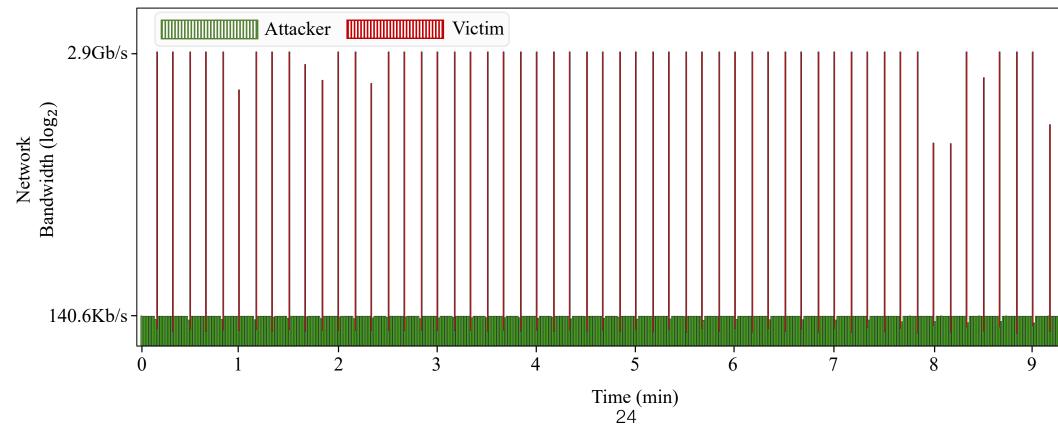

Vulnerable DNS Software

23

> 10 Mainstream DNS Software (All)

□ Testing attack factors (timeout, pkt. size, returning-time) and local experiments

	Practical Attack Bandwidth								
Software	Attacker -side			BAF					
BIND	140.6Kb/s	92.5Mb/s	155.5Kb/s	673.9x					
Unbound	140.6Kb/s	2.9Gb/s	140.6Kb/s	21,881.1x					
PowerDNS	562.5Kb/s	230.4Mb/s	70.3Kb/s	419.5x					
Knot	421.9Kb/s	925.4Mb/s	70.3Kb/s	2,246.3x					
Microsoft	210.9Kb/s	274.5Mb/s	70.3Kb/s	1,332.4x					
Technitium	210.9Kb/s	720.9Mb/s	140.6Kb/s	3,499.8x					
Simple DNS+	562.5Kb/s	36.4Mb/s	1,167.4Kb/s	66.3x					
MaraDNS	140.6Kb/s	2.5Mb/s	123.4Kb/s	18.5x					
Dnsmasq	140.6Kb/s	458.9Mb/s	210.9Kb/s	3,341.8x					
CoreDNS	140.6Kb/s	447.5Mb/s	468.0Kb/s	3,258.4x					



Long-term Experiments

Using Unbound

□ Sending 1,000 queries in each round (10s) for 10m

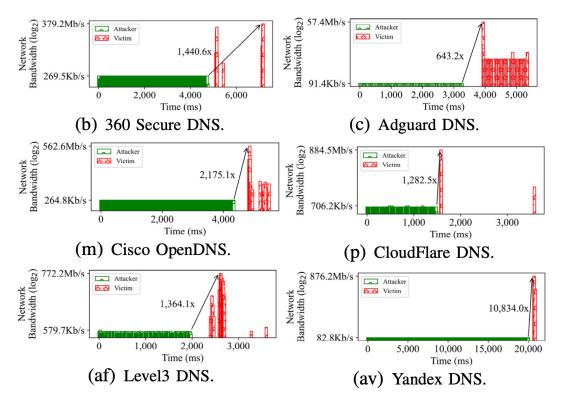
□ Results: stable

DNSBomb

Experiments under Different Attack Factors

> Multiple Resolvers x More Queries

- □ Unbound instances: 1-10
- □ # of DNS queries: 1k-10k
- \Box Results: more resolvers/queries \rightarrow More victim-side traffic (Gb/s)
- □ The trend stops at 6k-8k because Unbound cannot concentrate more queries
- The utmost bandwidth is 8.7Gb/s because our local network link is only 10Gb/s


# of Unbound	# of DNS Queries										
	1k	2k	3k	4k	5k	6k	7k	8k	9k	10k	
1	3.0	3.0	2.9	3.7	3.5	2.6	2.1	3.6	2.2	3.4	
2	2.6	5.5	3.2	4.3	2.9	4.7	6.7	6.2	4.4	6.0	
3	4.6	6.2	4.8	5.6	2.4	6.8	4.7	8.7	3.9	3.2	
4	4.9	4.3	7.5	2.5	4.8	5.0	3.5	3.3	4.5	5.2	
5	2.8	3.7	4.5	4.8	3.8	4.5	4.6	3.6	2.7	3.3	
6	3.1	7.5	5.1	6.8	7.4	2.6	6.2	6.6	4.6	5.4	
7	6.9	4.4	2.2	2.7	1.9	5.6	2.9	2.3	2.3	6.6	
8	1.4	7.4	4.3	5.5	3.2	3.3	2.1	3.9	2.3	8.7	
9	5.0	4.4	2.5	2.5	5.2	2.7	2.5	4.6	3.3	5.0	
10	2.5	2.3	3.4	3.3	6.7	7.1	4.0	3.2	3.2	3.3	

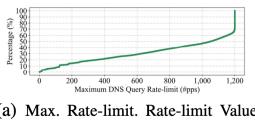
Vulnerable Public DNS Services

> 46 Public DNS Services (All)

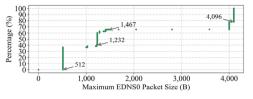
□ Testing their attack factors (timeout, pkt size, returning-time) and small experiments, **14/46:** BAF >1,000x

Dort	Practical Attack Bandwidth							
Part Vendors	Attacker -side	Victim -side	Nameserver -side	BAF				
360 Secure DNS	269.5Kb/s	379.2Mb/s	269.5Kb/s	1,440.0x				
AdGuard DNS	393.8Kb/s	699.5Mb/s	756.2Kb/s	1,819.0x				
CIRA Shield DNS	264.8Kb/s	904.9Mb/s	165.6Kb/s	3,498.8x				
Cisco OpenDNS	264.8Kb/s	562.6Mb/s	529.7Kb/s	2,175.1x				
CloudFlare DNS	706.2Kb/s	884.5Mb/s	441.4Kb/s	1,282.5x				
DNS.WATCH	248.4Kb/s	638.6Mb/s	540.6Kb/s	2,632.1x				
DNSPod Public DNS	331.2Kb/s	398.3Mb/s	274.2Kb/s	1,231.1x				
Dyn DNS	362.5Kb/s	383.1Mb/s	271.9Kb/s	1,082.2x				
Level3 DNS	579.7Kb/s	772.2Mb/s	283.6Kb/s	1,364.1x				
Neustar UltraDNS	248.4Kb/s	261.1Mb/s	689.1Kb/s	1,076.1x				
Verisign Public DNS	248.4Kb/s	329.4Mb/s	459.4Kb/s	1,357.6x				
Yandex DNS	82.8Kb/s	876.2Mb/s	536.7Kb/s	10,834.0x				

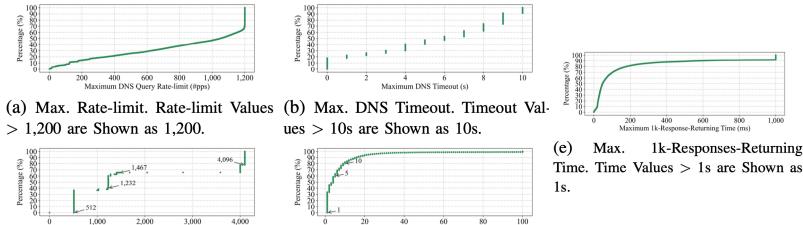
Vulnerable Open Resolvers

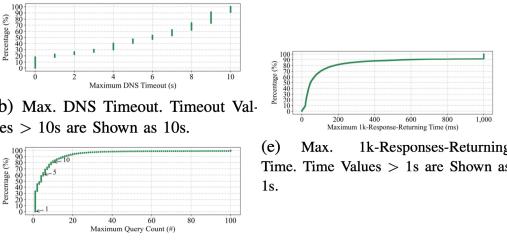

Internet Scanning

- Designed probing policies
- Using XMap + fpdns
 - Software identified: **517,075 (28.7%)**


Туре	Resolver number and percentage						
Collected	Alive on 07/05/2023	1,801,275 (100.0%)					
	Microsoft DNS	143,928 (8.0%)					
Software identified	Dnsmasq	96,331 (5.3%)					
	BIND	44,016 (2.4%)					
	Unbound	15,645 (0.9%)					
	PowerDNS	6,367 (0.4%)					
	Simple DNS+	166 (0.0%)					
	Knot	2 (0.0%)					

> Internet Measurement


- Measuring attack factors, e.g.,
 - o >50% resolvers could accumulate >1k queries
 - **>80%** resolvers support timeout of >1s
 - o >60% resolvers support pkt size of >1,232B


> 1,200 are Shown as 1,200.

(c) Max. EDNS0 Packet Size. Size val- (d) Max. Query Count. Count Values >ues > 4,096 are Shown as 4,096.

ues > 10s are Shown as 10s.

100 are Shown as 100.



Evaluation of DNSBomb

Using Unbound

- □ Sending 10k queries within a timeout window of 10s
- □ Attacking a DNS resolver, HTTP/2 website, and HTTP/3 website
 - Network bandwidth is totally occupied Ο
 - **Resolver never received a query** Ο
 - HTTP/2 service cannot be fetched
 - HTTP/3 is not much affected

Mitigation Solutions

> Limiting Attack Factors

G 6 experiments: base, restricting timeout to 1s, rate-limit to 100, pkt. size to 1,232, response-returning time to 1s, all restrictions

Best mitigation: restricting the timeout and response-returning speed

Software	Bas	Base ¹		Timeout ²		Rate-limit ³		Pkt. Size ⁴		Res. Time ⁵		All ⁶	
Software	BAF	%	BAF	%	BAF	%	BAF	%	BAF	%	BAF	%	
BIND	673.9x	100.0%	122.5x	18.2%	1,347.8x	200.0%	673.9x	100.0%	13.5x	2.0%	47.2x	7.0%	
Unbound	21,881.1x	100.0%	2,398.5x	11.0%	4,525.6x	20.7%	4,400.5x	20.1%	45.3x	0.2%	20.2x	0.1%	
PowerDNS	419.5x	100.0%	178.9x	42.6%	1,132.1x	269.9%	237.6x	56.6%	257.8x	61.4%	20.2x	4.8%	
Knot	2,246.3x	100.0%	1,225.3x	54.5%	1,347.8x	60.0%	2,246.3x	100.0%	40.4x	1.8%	13.5x	0.6%	
Microsoft	1,332.4x	100.0%	280.7x	21.1%	2,649.8x	198.9%	700.8x	52.6%	44.9x	3.4%	20.2x	1.5%	
Technitium	3,499.8x	100.0%	2,867.6x	81.9%	4,525.6x	129.3%	4,492.6x	128.4%	467.6x	13.4%	74.1x	2.1%	
Simple DNS+	66.3x	100.0%	61.7x	93.0%	726.3x	1094.8%	97.7x	147.3%	17.5x	26.3%	20.2x	30.5%	
MaraDNS	18.5x	100.0%	3.1x	16.7%	37.0x	200.0%	18.5x	100.0%	18.5x	100.0%	18.5x	100.0%	
Dnsmasq	3,341.8x	100.0%	624.1x	18.7%	4,546.7x	136.1%	1,033.5x	30.9%	2,728.0x	81.6%	20.5x	0.6%	
CoreDNS	3,258.4x	100.0%	524.2x	16.1%	4,389.8x	134.7%	821.8x	25.2%	158.4x	4.9%	20.5x	0.6%	

¹: Base Experiment. ²: Timeout to 1s. ³: Rate-limit to 100. ⁴: Packet Size to 1,232. ⁵: Response-Returning Time to Timeout. ⁶: All Restrictions Set.

DNSBomb

Vulnerability Disclosure

> All DNS Implementation are Vulnerable □ Reporting to 10 DNS software and 46 vendors **POWERDNS::: (KNOT RESOLVER** □ 24 Discussed/Confirmed (10 CVEs) **III Technitium Dnsmasq CoreDNS** Industry-wide CVE-2024-33655 于 一 安全DNS Akamai Vantio DNS CZ.NIC ODVR **114DNS** XTOM ONEDNS quado ([®]) SAFEDNS **DNS.SB** AliDNS **Baidu DNS** ByteDance DNS ADGUARD DNS **CFIEC Public DNS** Yandex DNS **CONTROL D** DYN

DNSBomb

BIND 9 🤳 unbound

Wrap-up

Paper

Thanks for listening! Any question?

Xiang Li, Tsinghua University

x-I19@mails.tsinghua.edu.cn

DNSBomb

Tool