

TuDoor Attack: Systematically Exploring and Exploiting Logic Vulnerabilities in DNS Response Pre-processing with Malformed Packets

Xiang Li¹ Wei Xu¹ Baojun Liu¹ Mingming Zhang¹³ Zhou Li² 🖾 Jia Zhang¹³ Xiaofeng Zheng ¹⁵ Chuhan Wang ¹ Jianjun Chen ¹³ Haixin Duan ¹³⁴ 🖾 Qi Li ¹ Deliang Chang ⁵ ² University of California, Irvine ³ Zhongguancun Laboratory ⁵ QI-ANXIN Technology Research Institute ⁴ Quan Cheng Laboratory \boxtimes Corresponding Author(s)

¹ Tsinghua University

DNS Resolution and Packet

- Translate human-friendly domain names into machine-readable IP addresses and vice versa.
- Multiple resolver roles: stub, forwarder, recursive, and authoritative.
- Iterative resolution process: C/S style, recursive resolution, and caching.

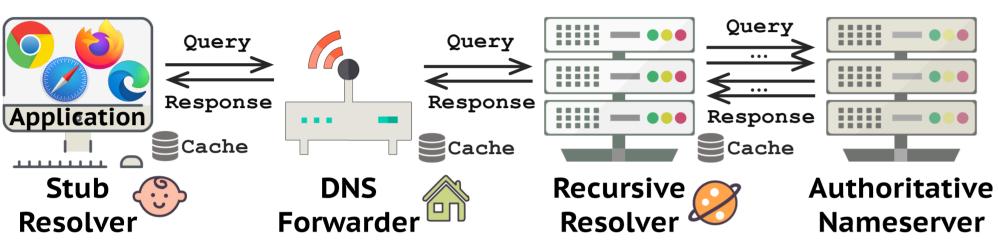


Figure 1. General DNS resolver roles and domain name resolution process.

- Communicating primarily over **UDP**.
- **DNS packet:** a 12-byte DNS header and a DNS body.
- Two important fields: TxID for authentication and QR indicating a query (0) or response (1).

0	, ¹⁶ ,	17	21	25	28	
it						
Source Address						
Destination Address						
Source Port		Destination Port				
Length		Checksum				
Transaction ID(TXID)	Q R	OpCode	Flags	Z	RCODE	
QDCOUNT		ANCOUNT				
NSCOUNT		ARCOUNT				
Question Section w/o Resource Records in other sections						

Figure 2. DNS packet format on UDP.

DNS Cache Poisoning Attacks

- Injecting forged responses into resolvers' cache and hijacking domains and traffic.
- DNS cache poisoning attacks **continue to be proposed** after multiple mitigation solutions.

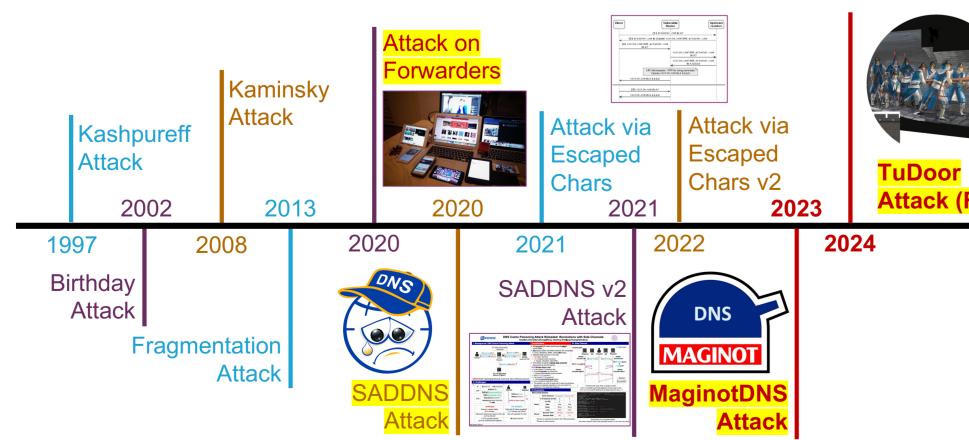
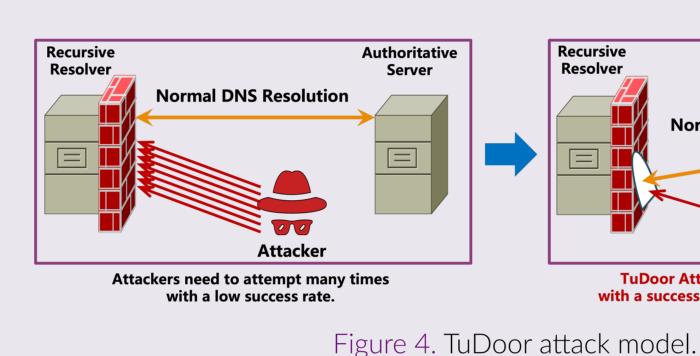



Figure 3. Timeline of DNS cache poisoning attacks.

TuDoor Attack [1]

- New powerful DNS-related attacks: cache poisoning, DoS, and resource consuming. • TuDoor in the DNS Wall: a very covert side-channel like 突门 in the Great Wall. • Exploiting vulnerabilities in DNS response Pre-processing with malformed packets.

Analysis of DNS Response Pre-processing

- DNS response pre-processing **never been studied** thoroughly, leaving potential threats. • What we did: constructing state machines for response pre-processing and finding bugs.

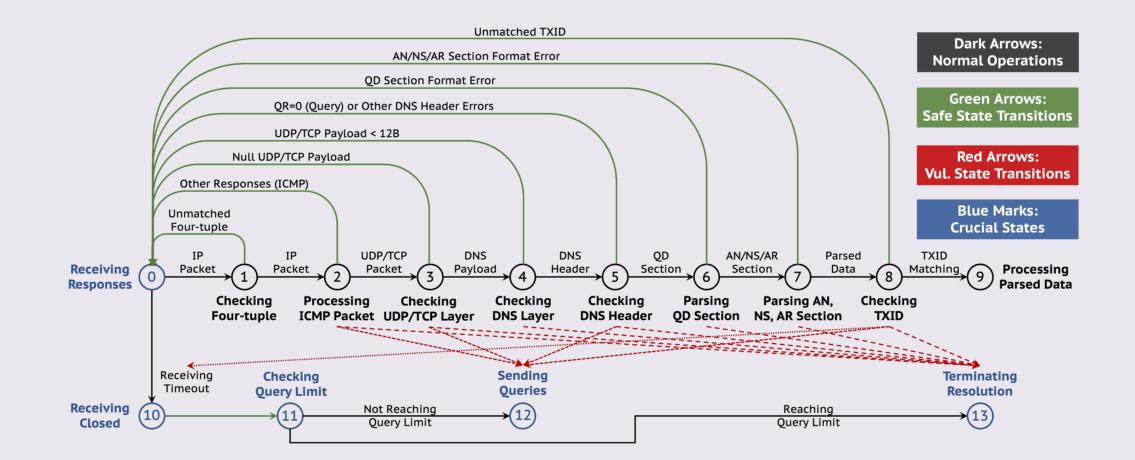


Figure 5. General state machine model of DNS response pre-processing (Except for the red dotted arrows).

Vulnerable State Transitions

• 28 DNS software: 8 recursive, 10 forwarders, 6 stub, and 4 DNS libraries (24 vulnerable).

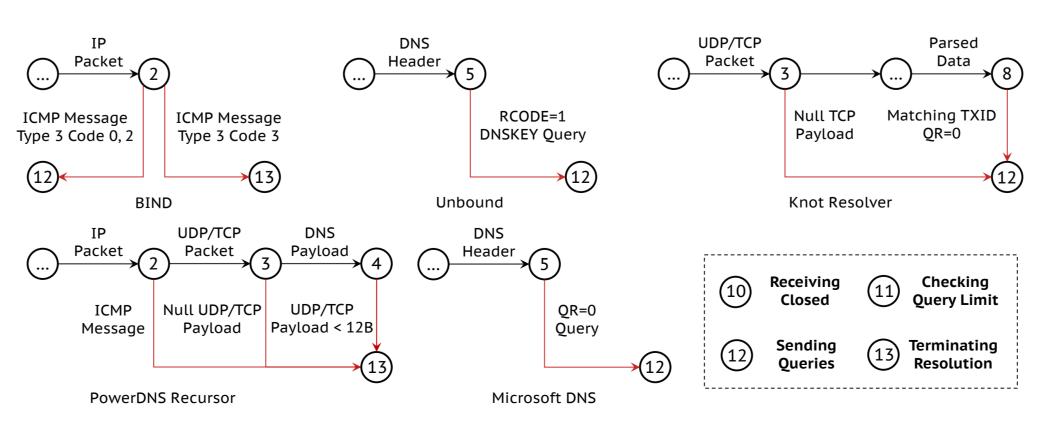
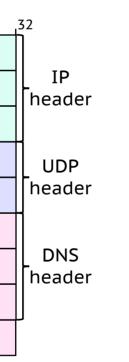
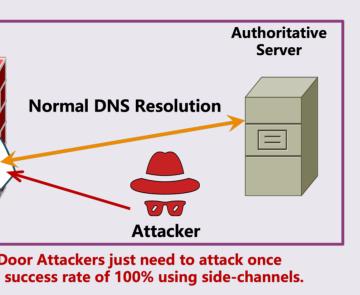




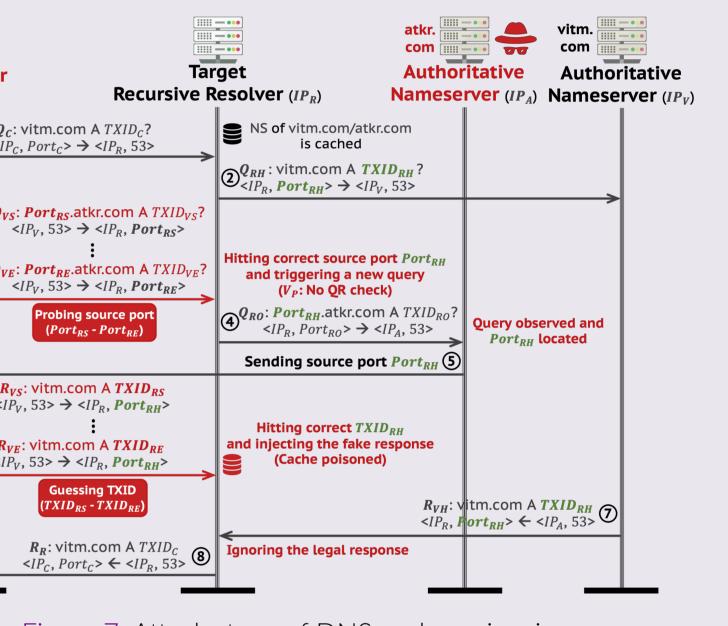
Figure 6. Part of vulnerable state transitions with red lines.

conditions. Attacke $P_c, Port_c > \rightarrow < IP_P, 53$ **Q_{VS}: Port_{RS}.atkr.com A** TXID_V $\langle IP_V, 53 \rangle \rightarrow \langle IP_R, Port_{RS} \rangle$ **Q**_{VE}: **Port**_{RE}.atkr.com A TXID_V $\langle IP_V, 53 \rangle \rightarrow \langle IP_R, Port_{RE} \rangle$ *R_{VS}*: vitm.com A *TXID_{RS}* $\langle IP_V, 53 \rangle \rightarrow \langle IP_R, Port_{RH} \rangle$ R_{VE}: vitm.com A TXID_{RI} $\langle IP_V, 53 \rangle \rightarrow \langle IP_R, Port_{RH} \rangle$ lessing TXID ID_{RS} - TXID succeede

Figure 7. Attack steps of DNS cache poisoning.

Vulnerable Population and Mitigation Solution

- **Disclosure: 14 vendors** confirmed TuDoor with **33 CVEs** assigned.
- Detection & online tool: https://test.tudoor.net.


Haixin Duan, and Qi Li. In Proceedings of 2024 IEEE Symposium on Security and Privacy, IEEE S&P '24, 2024.

UCISamueli School of Engineering University of California, Irvine

TuDoor Attack Example (1/3): DNS Cache Poisoning

• Exploiting one **new side-channel vulnerability** to locate the source port with 2,500 packets and brute-force 65,536 TxIDs (The fastest DNS cache poisoning attack on Microsoft DNS). • Attack time: avg. 425ms, 200 – 1,000 times faster than prior attacks under the same

• Vulnerable: 24/28 DNS software, 18/42 public services, and 423k (23.1%) open resolvers. • **Mitigation:** improving poor DNS response pre-processing implementations.

Figure 8. Part of vulnerable DNS vendors.

References

[1] Xiang Li, Wei Xu, Baojun Liu, Mingming Zhang, Zhou Li, Jia Zhang, Deliang Chang, Xiaofeng Zheng, Chuhan Wang, Jianjun Chen,

TuDoor Attack: Systematically Exploring and Exploiting Logic Vulnerabilities in DNS Response Pre-processing with Malformed Packets.