45th IEEE Symposium on

Security and Privacy

TuDoor Attack:

Systematically Exploring and Exploitin

Logic Vulnerabilities in DNS Response Pr
processing with Malformed Packets

Xiang Li, Wei Xu, Baojun Liu, Mingming Zhang, Zhou Li “, Jia Zhang, Deliang Chang,
Xiaofeng Zheng, Chuhan Wang, Jianjun Chen, Haixin Duan“, and Qi Li

Presenter: Xiang Li, Tsinghua University

School of Engineering

University of California, Irvine

@THU @ucCl

Attack Impact

Our TuDoor attack could poison
arbitrary domains, e.g., .com and .net.

Poisoning vulnerable resolvers’

cache within just one second.

Domain Name System (DNS)

> DNS Overview

U Translating domain names to IP addresses
4 Entry point of many Internet activities

L Domain names are widely registered

o = = B
@_‘: Q ‘ 9
Web Email

m TI;I . example.com
EEZD0
93.184.216.34\ g

S
)

Q4 2022 DOMAIN NAME
REGISTRATIONS

domain names
N

registered globally'2

%

INCREASE

year over year
from Q4 202112

@THU @ucCl

https://www.verisign.com/en_US/domain-names/dnib/index.xhtml

Domain Name System (DNS)

» Hierarchical Name Space
1 Authoritative zones: root, TLD, SLD = DNS records

L Domain delegation > Domain registration

» Multiple Resolver Roles

DNS namespace

© Query example.com e

.
= > | == Q Root
l Referral to TLD NS @ (™

AN Delegate

D CaChlng Q . %?Query example.com E @ @TLD

Referral to SLD NS @ \

4 Client, forwarder, recursive, authoritative

Vs

Ouery Ouery

N

= = DNS >‘ Forw- Recurswe
> lterative Resolution Process ctient '\ arder /" resolver Authorltative y, © pejegate
_ Response l |0 Query example.com (= X SLD
Q Client-server style — =
Authoritative answer @

4 @THU @ucCl

Domain Name System (DNS)

> DNS Resolution Process
U Primarily over UDP

U Iterative and recursive

D Caching DNS namespace
€ Query example.com : (= Root
== ‘ll'
Referral to TLD NS @ RaX y
Ouery Ouery v / \ Delegate
. . © Query example.com : (= TLD)
Ref LDNS @ = =
DNS .\ Forw- Recurswe eferral to 5 Aut\horltatlve
client \ arder / resolver N Delegate
! / servers \
Response i

‘ |O Query example.com

]

SLD]

\
> example
[:C::j ‘.IIIIHI.’

Authoritative answer @

e

TXID

Source port

32 bits space

Query

SP 50000 DP=53
S| example.com A?
(empty)

(empty)

(empty)

TXID=1001

ARAUANIQD

Response

SP=53 DP=50000
example.com A?
example.com A 1.1.1.1
(empty)

(empty)

TXID=1001

ARAUANIQD

@THU @ucCl

Takeaway

Since DNS is the cornerstone of the Internet,
enabling multiple critical services and applications,

Attackers have long been trying to manipulate its
response for hijacking via cache poisoning attacks.

Question

What is DNS cache poisoning?

Since DNS is primarily over UDP, attackers want to
inject forged answers into resolvers’ cache.

7 @THU @UuClI

DNS Cache Poisoning

» Target

Attack on
Forwarders

4 Injecting forged answers into resolvers’ cache

» Taxonomy Kaminsky

Attack .4

Kashpureff Tl [Attack via | Attack via
- On-path, off-path AttacE o Escaped |Escaped
Chars Chars v2

» Technique 2002

1997 2021

 Cat-and-mouse game

o = — Birthday % SADDNS v?2
@= Q = Q Attack \A

Attack

2021

2023

2022

[o

MAGINOT

MaginotDNS
Attack

@THU @ucCl

DNS Cache Poisoning (1/5)

» Kashpureff Attack (on-path, 1997)

1 Method: returning forged responses from the authoritative
1 Result: resolver accepting all records in the response

1 Cause: lacking data verification (bailiwick rules)

Stepl: Recursive query for
www.alternic.net/A

Step 2: Iterative query for

Evil client
www.alternic.net/A ISP resolver
Step 4: Step 5:
Recursive query for Bogus

www.internic.net/A| | Response

Step 3: Response including bogus

" . Y www.internic.net/NS RR
alternic.net

Authoritative
Server

Unsuspecting
server

@THU @ucCl

DNS Bailiwick Rules

» Mitigating the Kashpureff Attack

U The credibility checking when storing cache entries

1 Checking for “in bailiwick” in response data: answer records must be from the
same domain as the requested name

$ dig example.com Bailiwick

; » ANSWER SECTION:

example.com. 86400 IN A 93.184.216.34 In-bailiwick

Can be trusted
» » AUTHORITY SECTION:

Out-of-bailiwick
i i ADDITIONAL SECTION: - Should be removed

10 @THU @ucl

Takeaway

After the Kashpureff attack, bailiwick checking is
integrated into the resolver’s implementation,

DNS cache poisoning on recursives from the on-path
seems impossible to conduct from 1997.

11 @THU @ucCl

» Kaminsky Attack (Off-path, 2008)
1 Method: injecting forged responses with the “birthday paradox”

1 Result: resolver accepting glue records in the response

1 Cause: lacking source port randomization (TXID only 16 bits)

Evil client

If TXID not matching,
start the attack again
with another
www456.mybank.com

Step 1: Recursive query for

“mybank.com”
Authoritative
Server

www123.mybank.com/A

Step 2: TXID=1001: Iterative query for
www123.mybank.com/A

Step 4: Response

TXID=1001

wwwl23.mybank.com A?

(empty)

mybank.com NS ns.mybank.com

ARAUANIQD

ns.mybank.com A 1.1.1.1

12

TXQID=1000 »

TXID=1001

TXID=1002

—

ISP resolver
A A

~o
~
~
~
~
~
~

DNS Cache Poisoning (2/5)

success!

Step 3: Response

| TXID=XXXX

If TXID matching,

wwwl23.mybank.com A?

(empty)

mybank.com NS ns.mybank.com

ARAUANIQD

ns.mybank.com A 6.6.6.6

server

Unsuspecting

@THU @ucCl

/(
4

DNS Source Port/TXID Randomization

» Mitigating the Kaminsky Attack
4 Increasing the query guessing entropy
1 16-bit source port x 16-bit TXID = 32-bit space

1 Hard to brute-force

\\ vy \\ Yy
T T *\ 7 T *\
F65536:’r"[65536
RN~ ~ (RN
Source port TXID

13 @THU @ucl

Takeaway

After the Kaminsky attack, source port randomization
Is integrated into the resolver’s implementation,

DNS cache poisoning on resolvers from the off-path
became difficult to conduct from 2008.

14 @THU @ucCl

» Fragmentation-based Attack (Off-path, 2013)
1 Method: injecting forged responses by exploiting the 2nd fragment without checking

U Result: resolver accepting records in the resembled response

d Cause: acceptlng small-sized packets & predictable IPID (16-bits)

bits

IPID

Source port
TXID

0

8 16171819

3t P

28
i

32

Version THL

Type of Service

Total Length

Identif

. [} D M
ication OF.F

Fragment Offset

Time To Live

Protocol

Header Checksum

Source Address

Nacdanada on “AAV‘AGG

IP
header

UDP
header

Source Port Destination Port
Length Checksum
Transactlon ID g|0pcode| Flags | / | RCODE
QDCOUNT ANCOUNT
NSCOUNT ARCOUNT

DNS Cache Poisoning (3/5)

header |

15

Need to guarantee
IPID same for f1&f2

Fragment 1:

Fragment 2:
No validation fields

@THU @ucCl

DNS Cache Poisoning (3/5)

» Fragmentation-based Attack (Off-path, 2013)

1 Method: injecting forged responses by exploiting the 2nd fragment without checking
U Result: resolver accepting records in the resembled response

 Cause: accepting small-sized packets & predictable IPID (16-bits)

Recursive
Attacker
s s ey 32 35 | resolver server
Version IHL I Type of Service Total Length Ste 0: S OOfed 2n fl’a ment
Identification Olgl’lﬁl Fragment Offset Need to guarantee p p g > m
Time To Live | Protocol Header Checksum nesEer IPID same for f1&f2 Spoofed fragment cached
Source Address Step 1 DNS query
SE)I_JZE‘CE Port Destination Port UDP Fragment 1: > Step 2: DNS query
Length Checksum header
Transaction ID gl Opcode | Flags | 7 I RCODE Step 3: Fragmented
ODCOUNT ANCOUNT header Fragment 2:
NSCOUNT BREOUNT I No validation fields response
— <
—— m Forced fragmentation
Rogue response cached Defragmented with
16 by recursive resolver spoofed 2" fragment @THU e@ucl

IPID Randomization! Restricting Frag.?

» Mitigating the Fragmentation-based Attack

4 IPID randomization
o The fragmentation-based Attack needs to guess the IPID

o Randomized IPID could prevent the 2nd fragment from being accepted

1 Restricting fragmentation
o The root cause is fragmentation, no fragmentation or restricting it could be one mitigation

o For example, reducing the packet size, falling back to TCP, restricting the frag_number/timeout

J Other methods

o Adding new validation fields, such as applying 0x20 encoding to each RRs

17 @THU @ucl

Takeaway

After the fragmentation-based attack, IPID
randomization and fragmentation restriction
are widely applied in the OS kernel,

DNS cache poisoning exploiting fragmentation
became difficult to conduct from 2013.

18 @THU @ucl

=

C@) LAN @ =

Attacker

Oa. Any query (to recursive)

DNS
Forwarder

Ob. Response

Predicted IPID

1. Spoofed 2nd fragment

> | & EXB

I Header Ivictim.com A a.t.k.rl

2a. Query a.attacker.com

= Fragment cached

2b. Query a.attacker y

Recursive
resolver

2c. Query a.attacker.com

3c. Reassembled
rogue response

3b. Fragmented
response
ﬂ

Header (CNAME chain)

victim.com A a.t.k.r

Forced fragmentation

2d. Follow aliases (CNAME)

3a. Responses

(CNAME chain)

attacker.com A x.x.X.X

Defragmented with
spoofed 2nd fragment

19

DNS Cache Poisoning (3/5)

» Fragmentation-based Attack on Forwarders (Off-path, 2020)
d From our NISL lab, published at USENIX Security 2020

1 New method: although it is not easy to trigger fragmentation for a normal response,

we can increase the packet size with our own controlled domain

=1
=
==

Authoritative
Server
(attacker.com)

D

@THU @ucCl

> SADDNS Attack (Off-path, 2020)

1 Method: inferring the source port using Linux kernel’s side-channel

DNS Cache Poisoning (4/5)

1 Result: guessing the source port in a short time, resolver accepting fake records

4 Cause: Linux kernel’s global ICMP rate-limit leaking the port-use state

No cout
left

NO port open

ONE port open

[B ¢ = ocom
[---] X m [---] [---]
——— N — [} N — —
Resolver NS Attacker NS Resolver
iter Globa | ™ S Global One
Counter=50 | 50 UDP Probes’ | 50 UDP Probes | Counter=50
4- b
- it 49 closed ports™
Hit 50 closed ports &
— 39 1CMPs 49 ICNVMRs_1 0pen port -
\ /
Global Global
Counter=50-50=0 Counter=50-49=
20 . 43
UDP Verification UDP Verification
T — ~
' Spoofed |

counter
left

D

-,

Attacker

0. Muting

AN

Recursive
resolver

Server (vctm.com)

1. vctm.com A?

5

4. Port Scan
dp=0,1,2, ... x

.vctm.com A a.t.k.r, sp=53, dp=x

id=0,1,2, ... y

6. vctm.com A a.t.k.r

2. vetm.com A? sp=x, dp=53, id=y

Cached

3. vctm.com A

dp=dest port

sp=source port

v.c.t.m=legal IP
a.t.k.r=malicious IP

g:u @ucCl

http://www.saddns.net/

» Mitigating the SADDNS Attack

O ICMP global rate-limit counter randomization

o Implemented by Linux kernel

Patching the Linux Kernel

icmp: randomize the global rate limiter

Keyu Man reported that the ICMP rate limiter could be used
by attackers to get useful signal. Details will be provided
in an upcoming academic publication.

Our solution is to add some noise, so that the attackers
no longer can get help from the predictable token bucket limiter.

Fixes: 4cdf507d5452 ("icmp: add a global rate limitation")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Keyu Man <kman0Ol@ucr.edu>

Signed-off-by: Jakub Kicinski <kuba@kernel.org>

credit = min_t(u32, icmp global.credit + incr, sysctl icmp msgs burst);

if (credit) {
credit--;

/* We want to use a credit of one in average, but need to randomize

* it for security reasons.
*/
credit = max_t(int, credit -
rc = true;

}

prandom u32 max(3),

0);

L Reducing domain resolution timeout

o SADDNS needs a long timeout to infer the source port

o Prevent the authoritative server from being muted easily

1 General methods
o 0x20, DNSSEC

21

@THU @ucCl

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b38e7819cae946e2edf869e604af1e65a5d241c5

Question

26 years later, does bailiwick checking work as
desired after fixing the Kashpureff attack?

No. MaginotDNS breaks this guarantee with a new
powerful cache poisoning vulnerability.

22 @THU @ucl

DNS Cache Poisoning (5/5)

» MaginotDNS Attack (On-/Off-path, 2023)
O From our NISL lab, published at USENIX Security 2023

1 New attack surface: exploiting the bailiwick checking vulnerability to inject fake
response into the forwarder’s cache shared with the recursive (victim)

All future
queries hijacked

Attacker DNS client - Q Ordinary DNS client
@ Query Q for domain d 440k l 6 Query .com domainsj

. Forward to attacker
. © Oy Forward to attackers server Conditional DNS server (CD
= 2. @Match; _ @ Query all g

Query 3 O qu: Forward to upstream |:=

Attacker’s «— o | = .com domains
server that ZFf: Forwarding Zg: Recursi
ogue- tld ns.or
provides data Upstream DNS zones DNS zones N 9

Rogue authoritative

for d ;1001 DNS server server NS)
attac - ttack
= Global DNS cache e
| @ Forged response R, that matches Qfd or qu
: » com. NS nsl.rogue-tld-ns.org
A Exploit bailiwick vulnerability \

23 @THU @ucl

Patching the Resolver iImplementation

» Mitigating the MaginotDNS Attack

4 Aligning the bailiwick checking logic between fwders & recurs

o The logic implementation of forwarders is flawed

o Adding bailiwick checking for the forwarder

o)
&)

O]

PowerDNS

24

Unbound

Algorithm 1: DNS resolution process

1
2
3
4

e ® N w

10
11

12
13
14
15
16

17
18
19

20

21
22

23
24
25
26

27
28
29
30

input :A DNS Request from clients
output : A DNS Reply to clients

main ()
step_0: InitQuery (Q, Request)

|_ goto final
step_2: FindServers (Q, TgtSvrs)
step_3: SendQuery (Q, T gtSvrs)
step_4: ProcessResponse (Q, R)
if ServerIsError (Q, R) then
|_ goto step 3

if not MatchQuery (Q, R) then
| goto final
SanitizeRecords (Q, R)

if IsReferral (Q, R) then

\; if not IsFwding () then

UpdateQuery (Q)
goto step 2

if IsCNAME (Q, R) then

UpdateQuery (Q)
goto step 1

| CacheRecords (R, Cache)

final: ConstructReply (Reply)
| return Reply

InitQuery (Q, Request)
initialize Q.name, Q.type, Q.zone
if IsFwding () then
|_ ModifyFwdQuery (Q)
SanitizeRecords (Q, R)
for RR € Rdo
if OutofBailiwick (RR) then
|_ remove RR from R

UpdateQuery (Q, R)
|_ update Q.name, Q.type, Q.zone

step_1: if SeachCache (Q, Cache) then

@THU @ucCl

» Industry
U Presented at
» Government/University
1 An Austria government
d A Sweden government
O A Bournemouth University (BU)
» 60+ News Coverage
4dE.qg.,
» APNIC Blog

> BT EFRKHE

Real-world Impact

MaginotDNS: Attacking the Boundary of DNS Caching Protection

Zhou Li | Assistant Professor, University of California, Irvine
Xiang Li | Ph.D. Candidate, Tsinghua University

Qifan Zhang | Ph.D. Student, University of California, Irvine

Date: Wednesday, August 9 | 2:30pm-3:00pm (South Seas CD, Level 3)
Format: 30-Minute Briefings

Track: X Network Security

End-of-Day report

Timeframe: Freitag 11-08-2023 18:00 - Montag 14-08-2023 18:00 Handler: Michael Schlagenhaufer Co-Handler: n/a

News

MaginotDNS attacks exploit weak checks for DNS cache poisoning

MaginotDNS attacks exploit weak checks for DNS cache poisoning (13 aug)
https://www.bleepingcomputer.com/news/security/maginotdns-attacks-exploit-weak-checks-for-dns-cache-poisoning/

MaginotDNS attacks exploit weak checks for DNS cache poisoning

Posted on 15 August 2023

From bleepingcomputer.com

MaginotDNS attacks exploit weak checks for DNS cache poisoning

By Bill Toulas August 13,2023 10:12 AM 0

@THU @ucCl

https://www.blackhat.com/us-23/briefings/schedule/index.html
https://www.govcert.gv.at/cert-tagesmeldungen.html?detail=entry-0
https://www.cert.se/2023/08/cert-se-s-veckobrev-v-33
https://cert.bournemouth.ac.uk/maginotdns-attacks-exploit-weak-checks-for-dns-cache-poisoning/
https://www.bleepingcomputer.com/news/security/maginotdns-attacks-exploit-weak-checks-for-dns-cache-poisoning/
https://cepoca.cn/lectureHall/lectureRoomDetail?liveUid=af4d1df145b9e4defcfcef8c7c624c85

Question

Why is the new DNS cache poisoning attack still possible
after researchers and vendors did lots of work?

We found that the DNS response processing logic
has never been studied thoroughly.

26 @THU @ucl

Takeaway

It is necessary to provide a systematic
analysis of the DNS response processing logic
and expose all potential threats.

What we did in this paper. And we found,

27 @THU @ucl

Attack on
_ Forwarders
Kaminsky —
Attack e . .
Kashpureff e - Attack via | Attack via
Escaped Escaped
Altack TuDoor
Chars Chars v2
2002 2013 2020 2021 2023 | Attack (Fastest)
1997 2008 2021 2022 2024
Birthday SADDNS v2
Attack
Fragmentation
Attack
SADDNS MaginotDNS
Attack Attack

28 @THU @ucl

TuDoor Attack

» What is the TuDoor attack
 Proposed by our NISL lab, published at [IEEE S&P 2024]
O A new set of powerful DNS-related attacks

o DNS cache poisoning, DoS, and resource consuming

L Among them, TuDoor can poison vulnerable resolvers within 1s

» Name
4 Exploiting vulnerabilities of DNS response processing logic

3 A very covert response door = like &[] in the Great Wall
1 Called the TuDoor attack

29 @THU @ucl

> TuDoor in the DNS Wall

» Vulnerabilities in DNS Response Processing Logic

 Covert side-channel exploited by attackers

Authoritative
Server

Recursive

Resolver
7/

— /=4 Normal DNS Resolution

Iy
.

nlf oo
Attacker

Attackers need to attempt many times
with a low success rate.

30

TuDoor Attack

Authoritative
Server

Recursive
Resolver

Attacker

TuDoor Attackers just need to attack once
with a success rate of 100% using side-channels®™Y eu¢!

Attack Overview of TuDoor

» Attack Target

1 Resolvers, including stub resolver, DNS forwarders, and recursive resolvers

» Threat Model
O Identifying the target resolver
4 Triggering different vulnerabilities
 Conducting the attack

31

Normal Resolution

——————————————————————————

Three Target Resolvers

———————————

{ DNS { Recursive Authoritativy
iForwarder’ i Resolver i i Nameserver!
i T 1
riggering \fq;l.neirabiliiiies ! i \i\
S It (25200 i THT i
Q’u’e_ry’i' [f’ : : Que\ry :[..... - ® .]i [..... ® .] 1
' i
1

Query |
ﬁ;§$ z‘{ =¥ .} g_.j {siias: . .}

1
J=[TIS O — E— }§Cache' -——

—————————————

\
~---m—--—’ \~___m _____ N

@ Initiating @ Injecting malformed packets
DNS queries earlier than legal responses

(from off-/on-path)

A
Attacker <
)/ a -/ Attack Procedure

@THU @ucCl

Analysis of DNS Response Processing

» Systematic Analysis

28 DNS software - Constructing processing states

o 8 recursive resolvers, 10 DNS forwarders, 6 stub resolvers, 4 DNS programming libraries

Unmatched TXID

Dark Arrows:
AN/NS/AR Section Format Error Normal Operations

QD Section Format Error

Vul. State Transitions
Other Responses (ICMP)

Unmatched Blue Marks:

Four-tuple

Crucial States

P 1P UDP/TCP D DNS Qb AN/NS/AR Parsed TXID

QR=0 (Query) or Other DNS Header Errors Green Arrow.s:.
Safe State Transitions
UDP/TCP Payload < 12B
Null UDP/TCP Payload Red Arrows:
NS
>(4
U

Receiving 0 Packet (1 Packet NG Packet (3 Payload Header)/5\ Section)f6\ Section > 7\ Data > 8\ Matching) 9 Processing
Responses _/ _/ O/ Parsed Data
Checking Processing Checking Checking Checking Parsing Parsing AN, Checking

Four-tuple ICMP Packet UDP/TCP Layer DNS Layer DNS Header TXID
(.. N '= _____ -"----.-.....1-_.;,;;_5;:.’
Rgcenvmg Checking Sending Terminating
) Timeout Query Limit Queries Resolution
Receiving /7 A\ R Not Reaching R Reaching -
Closed 10 '\1[]] Query Limit 12 Query Limit 13

32

@THU @UuClI

» DNS Response Pre-processing Implementations

1 Part software
] Red lines

o Vulnerable

1P
Packet

ICMP Message
Type 3 Code 0, 2

ICMP Message
Type 3 Code 3

Vulnerable State Transitions

(e) Microsoft DNS.

IP

UDP/TCP Parsed P UDP/TCP DNS
DNS O Packet 7\ Data Packet Payload
Header 3
N
RCODE=1 Null TcP Matching TXID ICMP | Null UDP/TCP| UDP/TCP
DNSKEY Query Payload QRr=0 Message Payload |Payload < 12B
@
(b) Unbound. (c) Knot Resolver. (d) PowerDNS Recursor.
oD UDP/TCP DNS DNS QD AN/NS/AR Parsed
Section Packet Payload Header Section Section Data

QD Section
Format Error

Payload

(f) Simple DNS Plus.

UDP/TCP DNS DNS QD
N Section\f6\ Section

Null UDP/TCP

UDP/TCP

Payload < 12B| Header Error

Unmatched
TXID

AN/NS/AR
Error

AN/NS/AR

O Packet@ Packet@ Payloadm Header

ICMP
Message

Null UDP/TCP

&g

Payload Payload < 12B

UDP/TCP QD
Error

AN/NS/AR

Error

> 13

(h) CoreDNS, DNS Safety, and Golang DNS library.

33

(g) Technitium DNS, Acrylic DNS, AdGuard, NxFilter, YogaDNS, and Python DNS library.

IP UDP/TCP
Packet Packet

ICMP
Message

Null UDP/TCP
Payload

(i) pdnsd and Linux stub (J) Windows stub DNS.

DNS.

@THU @ucCl

Vulnerable State Transitions

» DNS Response Pre-processing Implementations
» Microsoft DNS (MS DNS)

4 If receiving new DNS query packets (QR=0) when waiting for responses

d MS DNS will accept this new query and start new resolution for any domains

DNS
O Header)@ Processing
- Header
OR=0
Query
Sending
Queries

34 @THU @ucl

Vulnerable DNS Software

> 24/28 Software

4 Vulnerable to cache poisoning, DoS, resource consuming

Cache Resource Cache Resource
Role Software . DoS : Role | Software . DoS :
Poisoning Consuming Poisoning Consuming
BIND No Vul Vul Dual DHCP Vul No No
Unbound No No Vul ';‘:;‘;"r' NxFilter Vul Vul No
Knot No No Vul YogaDNS Vul Vul No
Recur- :
sive PowerDNS No Vul No Linux No Vul No
Microsoft Vul No No Windows No Vul No
Simple DNS+ No Vul No Stub MacOS No Vul No
Technitium Vul Vul No I0S No Vul No
CoreDNS Vul Vul No ChromeQOS No Vul No
pdnsd No Vul No Python No Vul No
Forw- 1 cryiic DNS Vul Vul No : Golang No Vul No
arder Library :
AdGuard Vul Vul No JavaScript No Vul No
DNS Safety Vul Vul No 35 Java No Vul No

@THU @ucCl

> 1/42 Public Resolver 114DNS

U Vulnerable to cache poisoning

> 17142 Public Resolver _ CIRA Canadian
A Vulnerable (0 DoS &) apcuarpDNs Baidu DNS Pl e DNS
OpenDNS 0 CleanBrowsing | " 1'1 .1 () ololljiielly CZ -NIC
@ LEIEE CIIYERY: DNSlify DNS @f*&fg&ﬁwg@%&?ggg Quad101

NNNNNNNNNNNNNNNNNNNNNN

36 @THU @ucl

» Three Attacks e
Attacker
[Cache Poisoning aPo)
@ QH%: vlijtm.corgA I?;)XIL;%?
D DOS SA{;trat‘e:I:j <IP., Port;> = <IPg, 53>

1 Resource Consuming
> Attack steps

1 Example: cache poisoning
1 One new side-channel vulnerability

U Exposing the source port
o Attackers just need to send <65,535 pkts

1 Attack time: avg. 425ms
o 200 — 1,000 times faster than prior attacks

Attack
succeeded
(Poisoned

data)

37

®

Qys: Portgg.atkr.com A TXIDy?
<IPy, 53> > <[Py, Portps>

Qyg: Portgg.atkr.com A TXIDyg?
<IP,, 53> = <[Py, Portgp>

<€

Probing source port
(POTtRs = POTtRE)

—I—.
Target
Recursive Resolver (1P;)

& NS of vitm.com/atkr.com
e is cached

®QRH :vitm.com A TXIDgy?
<IPg, Portgy> > <IP,, 53>

Authoritative
Nameserver (ip,) Nameserver (pr,)

vitm.
com

Authoritative

Hitting correct source port Portgy
and triggering a new query
(Vp: No OR check)

@QRO Portgpy.atkr.com A TXIDg,?
<IPg, Portgy> > <IP,, 53>

>
Sending source port Portgy @

®

Rys: vitm.com A TXIDgg
<IPy, 53> 2 <[Py, Portpy>

Ryg: vitm.com A TXIDgg
<[Py, 53> 2 <[Py, Portgy>

<€

Guessing TXID
(TXIDgg - TXIDgE)

Rg:vitm.com A TXID,
<IP;, Port.> € <IPg, 53>

Hitting correct TXIDyy
and injecting the fake response

Query observed and
Portyy located

= Cache poisoned
S (p)
RVH tm.com ATXIDgy @
<IPR ortpy> € <IP,, 53>
Ignoring the legal response ‘
I
@THU @ucCl

» Internet Scanning

1 Designed probing policies

d Using XMap (Open-sourced tool)
1 423k (23.1%) out of 1.8M vulnerable

Type Resolver number and percentage
Collected Alive on 03/10/2023 1,837,442 (100.0%)
Microsoft DNS 205,984 (11.2%)
BIND 54,813 (3.0%)
Software Unbound 12,765 (0.7%)
identified | powerDNS Recursor 12,750 (0.7%)
Knot Resolver 45 (0.0%)
CoreDNS 8 (0.0%)

38

] xmap | Public

Vulnerable Open Resolvers

XMap is a fast network scanner designed for performing Internet-wide
IPv6 & IPv4 network research scanning.

®c W36 ¥ a7
Type Resolver number and percentage
Cache poisoning 205,984 (11.2%)
DoS 216,317 (11.8%)
Vulnerable _
Resource consuming 67,623 (3.7%)
TuDoor 423,652 (23.1%)

@THU @ucCl

Discussion & Mitigation

» Vulnerability Disclosure
d Confirmed and fixed by all affected software: BIND9, Knot, & Microsoft
d 33 CVE-ids published & Bounty awarded by Microsoft
» Root Cause
L Poor DNS response pre-processing implementations
U Failing to considering corner cases

» Mitigation Solution

1 Resolvers should await a time window for promising normal response

TuDoor Attack: Test

U Ignoring queries sent to non-53 ports

> Detection & Online Tool: tudoor.net

39 @THU @ucl

Vulnerable!

Wrap-up

Thanks for listening!
Any question?
Xiang Li, Tsinghua University

X-11 9@mails tsinghua.edu.cn

1-'?*‘

Tool

Ot ?H'E]

"'OJ'-."
E]': ’ﬂ;

@THU @ucCl

