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Abstract
Domain Name System (DNS) is a critical component of the
Internet. DNS resolvers, which act as the cache between DNS
clients and DNS nameservers, are the central piece of the DNS
infrastructure, essential to the scalability of DNS. However,
finding the resolver vulnerabilities is non-trivial, and this
problem is not well addressed by the existing tools. To list a
few reasons, first, most of the known resolver vulnerabilities
are non-crash bugs that cannot be directly detected by the
existing oracles (or sanitizers). Second, there lacks rigorous
specifications to be used as references to classify a test case as
a resolver bug. Third, DNS resolvers are stateful, and stateful
fuzzing is still challenging due to the large input space.

In this paper, we present a new fuzzing system termed
RESOLVERFUZZ to address the aforementioned challenges
related to DNS resolvers, with a suite of new techniques be-
ing developed. First, RESOLVERFUZZ performs constrained
stateful fuzzing by focusing on the short query-response se-
quence, which has been demonstrated as the most effective
way to find resolver bugs, based on our study of the published
DNS CVEs. Second, to generate test cases that are more likely
to trigger resolver bugs, we combine probabilistic context-
free grammar (PCFG) based input generation with byte-level
mutation for both queries and responses. Third, we leverage
differential testing and clustering to identify non-crash bugs
like cache poisoning bugs. We evaluated RESOLVERFUZZ
against 6 mainstream DNS software under 4 resolver modes.
Overall, we identify 23 vulnerabilities that can result in cache
poisoning, resource consumption, and crash attacks. After
responsible disclosure, 19 of them have been confirmed or
fixed, and 15 CVE numbers have been assigned.

1 Introduction

Domain Name System (DNS) is central to Internet activities,
translating human-friendly domain names to machine-friendly
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IP addresses. When a client user issues a DNS query to
an authoritative server with the answers, a DNS resolver is
often encountered on the resolution path, which provides
caching service that is essential to the scalability of DNS
infrastructure [52]. Numerous resolvers, including public
resolvers like Google DNS and local resolvers set up by ISPs,
have been deployed [1], running various DNS software (e.g.,
BIND [12] and Unbound [118]).

Yet, despite decades of development of DNS infrastructure,
resolver vulnerabilities are still continuously uncovered, with
some causing severe damage if exploited by attackers. For
example, by sending just one client query containing RRSIG,
the attacker can crash a BIND resolver entirely (CVE-2022-
3736 [2]). As another example, CVE-2022-2881 [18] could
be exploited like the infamous TLS heart-bleed vulnerabil-
ity [17] to read sensitive memory data. We believe new tools
should be developed to effectively uncover resolver vulnera-
bilities, in order to secure the DNS infrastructure.

Understanding resolver vulnerabilities. As the first step,
we try to understand the characteristics of resolver vulner-
abilities by mining the published CVEs (Section 2.2). By
carefully examining 239 CVEs published from 1999 to 2023
about 6 mainstream resolvers, we found a lot of them are
semantic bugs that violate high-level rules or invariants [115],
leading to cache poisoning [56], resource consumption, etc.
Detecting such bugs is still challenging as they usually do
not trigger software crash, which is the major target of the
existing fuzzers like AFL [33]. Though software fuzzing can
be applied to test resolver software, generating meaningful
DNS messages is non-trivial due to the complex structure
(Section 3). Moreover, DNS resolver runs a stateful caching
service, but stateful fuzzing has always been a major chal-
lenge in network fuzzing [8], due to computational complexity
in covering a large state space.

Query-response fuzzing for resolvers. To address the afore-
mentioned challenges unique to DNS resolvers, we develop a
new fuzzing system termed RESOLVERFUZZ (Section 4). To
accommodate resolver software that is built under different
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programming languages and models, we choose blackbox
fuzzing and monitor the status of a resolver with lightweight
tools like cache dump and tcpdump [36], without code recom-
pilation or binary rewriting [33]. The main insight guiding our
design of RESOLVERFUZZ is that a short message sequence
(e.g., one query from the client and/or one response from the
nameserver) is sufficient to trigger a large number of resolver
bugs, as revealed from our CVE study, so RESOLVERFUZZ
performs constrained stateful fuzzing by only mutating a pair
of query and response. To generate test cases that are likely
to be accepted by the resolvers, we perform grammar-based
fuzzing, by generating test cases with probabilistic context-
free grammar (PCFG) [50], and augmenting the test cases
with byte-level mutations. Given that the existing oracles are
unsuited to detect the non-crash bugs specific to resolvers, we
develop new oracles to detect cache poisoning and resource
consumption. Detecting cache poisoning is particularly chal-
lenging, due to the lack of rigorous DNS RFCs to strictly
define the canonical behaviors of caching. We address this
issue by performing differential testing [76] and use the cache
inconsistency to find potential vulnerabilities. Still, inconsis-
tent behaviors are pervasive among resolvers [108], and many
of them are not related to vulnerabilities. Hence, we develop
a new bug triaging method based on bisecting K-means to
cluster the inconsistent test cases, so the manual investigation
efforts are greatly reduced. Finally, to increase the fuzzing
throughput and avoid affecting the remote DNS nameservers,
we build a new test infrastructure that localizes the nameserver
hierarchy and enables concurrent resolver testing.
Evaluation. We have generated over 700K test cases towards
4 resolver modes (recursive-only, forward-only, CDNS with
fallback, and CDNS without fallback) (Section 5). The eval-
uation results show the test generator has good coverage of
valid DNS messages and the oracles are effective in pinpoint-
ing resolver bugs. We have discovered 23 vulnerabilities with
RESOLVERFUZZ (Section 6). With responsible disclosure,
19 of them have been confirmed or fixed, and 15 CVEs were
assigned. We even discovered a very powerful bug (CP1 in
Section 6.1) that can entirely bypass the bailiwick checking
rule, and poison any domain in a TLD zone (e.g., any .com
domain can be compromised after the bug is exploited).
Contributions. Our contributions are summarized below.

• We conduct a comprehensive study of DNS CVEs.

• We develop a new blackbox fuzzing system RESOLVER-
FUZZ, based on our insights from the CVE study. It
performs constrained query-response fuzzing for effi-
cient bug discovery on resolvers.

• We develop and/or adjust a set of techniques, including
DNS localization, PCFG-based test generation, differen-
tial testing, etc., for RESOLVERFUZZ.

• We evaluate RESOLVERFUZZ against 6 mainstream re-
solvers and uncover 23 bugs. We discuss our findings

Resolver-
response 𝑹

Client-
query 𝑸

Client
Recursive 
resolver

ROOT (.)
NameserverResolver-

query 𝑸!

Auth-
response 𝑹𝑨

TLD (.com)
Nameserver

SLD (cnn.com)
Nameserver

Ref-
response 𝑹𝑹

𝑹𝑹

𝑸!

𝑸!

1

7 6

5

4

3
2

8

Figure 1: Example of DNS resolution process. “ref-response”
and “auth-response” are both considered as “ns-response”.

with software vendors and received acknowledgment.

• RESOLVERFUZZ is open-sourced [99].

2 Background

2.1 DNS and Resolvers

DNS translates a user-friendly domain name to a numerical
IP address. A domain name is written as a sequence of labels
separated by “.”, e.g., cnn.com. To resolve a domain name,
a DNS client (or stub resolver) usually issues a DNS query
to a public DNS (e.g., Google Public DNS [27]) or a local
recursive resolver (e.g., Comcast ISP resolver), and lets the
resolver contact nameservers iteratively. Figure 1 illustrates
the process for resolving www.cnn.com, during which the
nameservers of root (denoted by “.”), Top-Level Domain
(TLD) .com, and Second-Level Domain (SLD) cnn.com are
contacted. They answer the queries with resource record sets
(RRSets) in their zone configurations.

The format of the DNS query and response follows RFC
1034 [83]. In essence, the query and response share the same
set of sections, including “Flags”, “Question”, “Answer”,
“Authority”, and “Additional”. “Flags” signals the kind of
message (e.g., QR represents response and AA represents au-
thoritative answer). “Question” encodes the domain name
to be resolved and the type of RRSet to be retrieved (e.g., A
represents IPv4 address, AAAA represents IPv6 address, and
NS represents nameserver domain). When the contacted name-
server has the authoritative answer, the “Answer” section of
the response message encodes the requested RRSet. Other-
wise, within the response, “Authority” fills referral name that
is “closer” (e.g., .com nameserver is closer to root server in
answering queries about example.com) to give the authori-
tative answer, and “Additional” fills glue records about the
server addresses. Figure 8 shows examples of DNS messages.

In this paper, we name the query from DNS client to re-
solver as client-query, the query from resolver to nameserver
as resolver-query, response from nameserver to resolver as
ns-response, response from resolver to client as resolver-
response. For ns-response, it is classified into ref-response
which has the referral record, and auth-response which has
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the authoritative answer.
Resolver modes. The resolver is central to the resolution
procedure, which also caches the responses to reduce query
latency. The standard mode of resolver runs recursive resolu-
tion and contacts nameservers. Alternatively, the resolver can
run as forwarder, which passes the query to other servers (e.g.,
upstream recursive resolvers). A resolver can also run the
recursive and forwarder mode concurrently, with each mode
handling a subset of DNS namespace, and such resolver is
called conditional DNS (CDNS) [4,117]. For some resolvers,
a fallback option [13,119] can be enabled, to reissue the query
in the recursive mode when forwarding the query fails.

2.2 Study of DNS CVEs
Here we perform a comprehensive study to understand the
distribution and root causes of DNS-related vulnerabilities,
which also guides the design of RESOLVERFUZZ. We crawl
Common Vulnerabilities Exposures (CVE) databases [80–82]
and mainly analyze the CVE reports of six mainstream, open-
sourced DNS software, including BIND [20], Unbound [25],
Knot [21], PowerDNS [23], MaraDNS [22], and Techni-
tium [24]. They are also extensively analyzed by previous
work [48, 65, 72, 128]. We elaborate how we analyze CVE
reports in Appendix A.

Table 1 lists our study results of DNS CVEs related to
resolver modes, and the CVE dates range from 1999 to 2023.
We summarize our key findings (F1 to F5) below.

• F1: Most of the CVEs are about resolvers. In total,
we identified 291 CVEs related to the 6 studied DNS
software (132 CVEs are related to other DNS software).
Among them, 245 (84%) are about resolvers (e.g., CVE-
2019-6477 and CVE-2020-8621 for the recursive and
forwarder mode). Only 46 CVEs are about nameservers
(e.g., CVE-2020-8619 and CVE-2017-3143).

• F2: Diversified CVEs among DNS software. Though
BIND dominates in the number of CVEs1, a prominent
number of CVEs have also been found in other software
(except Technitium). Moreover, we found only 13 CVEs
among the 245 CVEs affect all software (e.g., NXNSAt-
tack under CVE-2020-12662), suggesting the diverse
implementations of DNS software.

• F3: A significant portion of CVEs are not related to
crash. Like the results from a prior work that studies
CVEs in TCP stacks [130], we found the bugs that do
not trigger software crash constitute a prominent portion
(109 out of 245 CVEs). The main consequences include
cache poisoning (46 CVEs, e.g., caching illegal records
under CVE-2002-2213 and CVE-2006-0527) and re-
source consumption (39 CVEs, e.g., spending excessive

1The high number of CVEs of BIND does not necessarily indicate it is more
vulnerable. In fact, BIND has the largest market share [57] and has been
extensively tested [61].

resources to handle DNS queries under CVE-2022-2795
and CVE-2021-25219). For the 136 crash-related bugs,
only 43 are caused by memory corruption such as buffer
overflow under CVE-2020-8625 and CVE-2021-25216.
Others are mainly triggered by assertion failures (e.g.,
CVE-2022-0635 and CVE-2022-3080).

• F4: Nearly every field of a DNS message has related
CVEs. Examples include query name (CVE-2020-
8617), query type (CVE-2022-0667), query flag
(CVE-2017-15105), rcode (CVE-2018-5734), rdata
(CVE-2013-4854), TTL (CVE-2003-0914), etc.

• F5: Most of the CVEs are triggered with a very short
message sequence. We found 222/245 (91%) CVEs
could be triggered by sending just one client-query or
ns-response. One such example is CVE-2022-3736. For
the other CVEs that require longer sequences (e.g., CVE-
2022-3924), many client-queries are needed to trigger
the bugs. We show their details in Appendix A.

With the above insights, we design RESOLVERFUZZ and
elaborate the design choices in Section 3. We acknowledge
that our CVE study could suffer from survivorship bias, and
we discuss this issue in Section 7.

2.3 Prior Tools for DNS Bug Discovery

Here we survey the related tools that can automatically detect
DNS bugs. In Section 8, we survey systems that can detect
other network vulnerabilities.

First, we found fuzzing has been applied to test DNS re-
solvers. SnapFuzz aims to achieve high throughput in fuzzing
network applications [5]. It rewrites the tested program
for greybox fuzzing and fast asynchronous communication.
It was evaluated against a lightweight DNS software Dns-
masq [29] that is usually deployed on routers, and 7 crashes
were detected within 24 hours. However, it cannot directly
detect non-crash bugs. DNS Fuzzer performs byte-level mu-
tation by inserting new bytes into the seed DNS queries [38].
Similar to SnapFuzz, it only detects crashes. As far as we
know, the most related tool to RESOLVERFUZZ is dns-fuzz-
server [109], which performs grammar-based and byte-level
mutation on queries and responses. In Section 5.2, we show
the detailed comparison.

In addition to resolvers, DNS nameservers have also been
found vulnerable when the zone files installed by the domain
owners have mis-configurations. A number of tools were
developed to find such mis-configurations [30, 78, 85, 90, 100,
121]. Recently, formal methods have been applied by check-
ing the DNS configurations with formal specifications. G-
Root performs formal verification to prove the correctness of
configurations and find counterexamples [54]. SCALE jointly
generates zone files and corresponding queries that are speci-
fied by RFCs to discover implementation inconsistencies [55].
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Table 1: Study results of DNS CVEs for mainstream DNS software.

Software*

# CVE

Non-crash Crash
Total

Cache Poisoning Resource Consum.1 Others2 Total Non-memory Memory Total

BIND 18 18 11 47 75 22 97 144
Unbound 4 5 4 13 5 8 13 26

Knot Resolver 6 4 0 10 2 0 2 12
PowerDNS Recursor 13 8 9 30 7 6 13 43

MaraDNS 2 3 0 5 4 7 11 16
Technitium 3 1 0 4 0 0 0 4

Total 46 39 24 109 93 43 136 245
*: Recursive or forwarding modes. 1: Resource consumption.
2: An example of other non-crash bugs: CVE-2018-5738 that improperly permits recursion to all clients.
# CVE of the forwarding mode only (7 in total): BIND (5), Unbound (0), Knot (1), PowerDNS (0), MaraDNS (0), and Technitium (1).
# CVE of the authoritative mode only (46 in total): BIND (19), Unbound (4), Knot (2), PowerDNS (20), MaraDNS (1), and Technitium (0).
# CVE of other software (132 in total): Microsoft DNS (90), Simple DNS Plus (1), Dnsmasq (34), CoreDNS (1), NSD (4), Yadifa (1), and TrustDNS (1).

Yet, for DNS resolvers, there lacks rigorous specifications to
be used as references for vulnerability discovery [84, 112].

3 Overview of RESOLVERFUZZ

3.1 Problem Definition and Challenges
General threat model and targeted vulnerabilities. We
consider a public or local recursive resolver to be targeted
by the attacker. The attacker is able to control a downstream
DNS client and/or an upstream nameserver on the resolution
path of the resolver. Hence, DNS queries and responses
in arbitrary format can be issued against the resolver. We
consider 4 types of vulnerabilities as they are related to most
CVEs (see Table 1) and overview them below. In Section 6,
we elaborate the threat model for each type.

• Cache poisoning. The attacker tampers resolver’s cache
and directs victim clients to malicious servers.

• Resource consumption. The attacker heavily consumes
resolver’s resources to impact its service quality.

• Non-memory crash. The attacker terminates a resolver
without memory corruption, e.g., by sending DNS mes-
sages to execute code with assertion failures.

• Memory crash. The attacker’s DNS messages corrupt
the resolver memory and terminate the resolver.

To notice, side-channel vulnerabilities are out of scope of
this work, as these vulnerabilities often exist at the layers
below DNS. In Section 8, we review them under the theme of
off-path cache poisoning attacks.
Design goals and challenges. RESOLVERFUZZ aims to un-
cover the vulnerabilities under the aforementioned threat
model. We focus on four types of vulnerabilities including
cache poisoning, resource consumption, service crash, and
memory corruption, as our survey in Section 2.2 suggests they

are the major issues against DNS software. RESOLVERFUZZ
should be efficient in testing resolvers at high throughput.
Moreover, RESOLVERFUZZ should be able to tell whether
the test inputs could lead to vulnerability discovery at high ac-
curacy. We encounter a few key challenges towards meeting
these goals:

• C1: Efficiency. Notable latency is expected for a regular
DNS resolution, as network communications are needed
among the client, resolver, and multiple nameservers.
Hence, achieving high throughput for resolver fuzzing
is not trivial.

• C2: Mutation. The widely used greybox fuzzers like
AFL [33] mutate the input with coverage-based met-
ric. However, such metric does not provide sufficient
guidance on which part of the testing input should be
mutated [94], but DNS messages contain many fields
that are related to bugs (F4 in Section 2.2).

• C3: Stateful fuzzing. Different from nameservers that
run in a stateless mode, resolvers are stateful [53],
whose states depend on cache records, configurations,
etc. Stateful services have been considered a major chal-
lenge for network fuzzing [8], due to the large search
space of input sequences.

• C4: Oracle. Non-crash bugs have a large share in re-
solver CVEs (F3 in Section 2.2). However, there lacks
an oracle to detect such bugs. Instead, crash bugs can
be detected by oracles like AddressSanitizer [105]. Dif-
ferential testing has been used to uncover semantic bugs
that are non-crash, but none of the prior works built the
oracle for DNS. Moreover, our empirical analysis sug-
gests inconsistencies among DNS resolvers are common,
and many of them do not indicate vulnerabilities. In Sec-
tion 5.2, we show an example of normal inconsistencies.
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3.2 Workflow of RESOLVERFUZZ

RESOLVERFUZZ addresses the aforementioned challenges
with 3 newly designed components, which are elaborated in
Section 4. The workflow of RESOLVERFUZZ is also illus-
trated in Figure 2. In the first stage, the testing infrastructure
(Section 4.1) loads the resolvers of different implementations
and configures the environment. A number of optimization
techniques are applied to increase the throughput of DNS
queries and responses, addressing C1. Then, the tests genera-
tor (Section 4.2) performs grammar-based mutation on client-
queries and ns-responses, addressing C2. Though resolver
is stateful (C3), according to our study on CVEs (F5 in Sec-
tion 2.2), triggering a bug in most cases only requires a short
sequence of one client-query and/or one ns-response. Hence,
we simplify stateful fuzzing to simulate short sequences. Fi-
nally, for data collected by our data dumper, including the
cache, log, response, and traffic, we develop different ora-
cles to detect different types of vulnerabilities mentioned in
Section 3.1. We apply differential testing to identify inconsis-
tencies among resolvers to capture cache poisoning bugs. To
address C4, we develop a new method to cluster inconsisten-
cies and alert on the abnormal ones, so the manual efforts in
bug investigation will be significantly reduced.

4 Design of RESOLVERFUZZ

4.1 Testing Infrastructure and Optimization
We design a new infrastructure to simulate DNS queries and
responses against resolvers and collect the traces to be later an-
alyzed. The infrastructure mainly includes a DNS client and
a nameserver that emit messages generated by our fuzzer (we
call them attacker client and attacker server), a test scheduler,
and a trace collector. Below we first describe these compo-
nents and their network setup. Then, we overview the whole
testing process.
Attacker client and server. Instead of using the off-the-shelf
DNS software, we implement the attacker client and server
with Python scripts. As such, we are able to send arbitrary
queries and responses that can even be incompliant with DNS
RFCs [83] and reduce the processing latency with lightweight
implementations. Specifically for the attacker server, though
the standard implementations require a zone file to be hosted
to answer the queries with the contained records, we choose to
directly generate an ns-response given a client-query and skip
the zone file (details are in Section 4.2). We notice that related
systems like SCALE [55] reuse the existing DNS software
for nameservers and mutate the zone files for testing purposes.
Our customized implementation is more flexible in response
generation, and even allows low-level manipulation of DNS
responses (e.g., answering DNS queries with UDP or TCP).
Test scheduler. This central component initializes DNS com-
ponents, including the attacker client, attacker server and

resolvers. Between each round of test (i.e., one round-trip
of DNS resolution), the scheduler resets these components.
For efficient and complete resetting, we choose to host these
components with lightweight Docker containers [77]. To in-
crease the testing throughput, the scheduler will command the
client to send queries to the resolvers in parallel and replicate
the resolver instances. Specifically, the scheduler groups an
attacker client, an attacker server, and resolvers into a unit,
and runs multiple units concurrently (with different test cases).
With container-based isolation, each resolver instance can be
tested independently.

Resolvers and analyzed data. To detect the 4 types of vulner-
abilities described in Section 3.1, we install a set of monitors
inside each resolver container. First, we use a set of tools
to export the resolver cache from memory to files (see Sec-
tion 5.1 for details of the tools) to detect cache-related bugs.
Second, we use tcpdump [36] to collect the incoming and
outgoing network traffic to detect bugs related to resource
consumption. Third, we collect the log files generated by the
DNS software. Finally, we also monitor the running status
of the resolver process to detect service crashes and memory
corruption with Linux command ps [58].

In addition to testing the standard recursive mode (termed
recursive-only), we also test 3 alternative resolver modes:
forward-only, CDNS without fallback, and CDNS with fall-
back (explained in Section 2.1). We are motivated to test
different modes due to that certain modes, e.g., forward, are
more vulnerable as uncovered by previous work [128]. Chang-
ing a resolver from one mode to another can be easily done
by loading a different configuration file into the resolver con-
tainer. Figure 12 in Appendix B shows configurations for all
modes. To notice, we did not test all resolver configurations:
e.g., we disable DNSSEC [6] since we found it introduces
a large number of inconsistencies among resolvers that are
irrelevant to bugs. We discuss this limitation in Section 7.

Network configurations. All the Docker containers are con-
nected to a bridged Docker network assigned with /16 private
IP addresses. Under a standard DNS resolution between the
client and the nameserver of a registered domain, remote
nameservers like root and TLD servers have to be contacted,
so DNS round-trips could incur notable latency. Moreover,
our tests could trigger bugs on those remote servers, raising
ethical concerns. To address these issues, we choose to local-
ize the nameservers between the attacker client and attacker
server in our lab network. We implement a server to simu-
late all these nameservers. Each client-query asks about a
domain name owned by us, and we use different subdomains
to separate the test cases of different resolver modes.

Testing process. 1) The test scheduler initializes the Docker
network and n units of simulated DNS infrastructure. 2) The
test scheduler obtains test cases from the generator and dis-
patches them to the attacker client and server. 3) After the
start of each resolver container, the internal monitors collect
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Figure 2: Workflow of RESOLVERFUZZ.

the information about cache dump, network traffic, and pro-
cess information. 4) When the attacker client receives the
resolver-response, the resolver containers will be reset via
cache flushing or software restarting, and the corresponding
unit will go back to step 2 until all tests are completed.

4.2 Test Case Generator

We generate the test cases from two dimensions, including
client-queries for our attacker client and ns-responses for our
attacker server. Considering a DNS resolver as a stateful
service, the ns-response is generated corresponding to a client-
query. Though we only simulate a short message sequence
(one client-query and one ns-response), we find it sufficient to
uncover a variety of bugs, as suggested by F5 in Section 2.2.

Though we can freely generate an ns-response disregard-
ing the questions embedded in the client-query, our empirical
analysis suggests such responses are often quickly dropped by
the resolver. As a result, we restrict the ns-response to contain
most of the fields (e.g., the “Question” Section and TxID)
from the client-query and only add information to sections
like “Answer”, which significantly reduces the input space.
Though under standard DNS resolution, the nameserver gen-
erates a response after seeing the query, we found this process
can be optimized by generating the pair of ns-response and
client-query simultaneously and dispatching them to the client
and nameserver before the resolver is queried2.

Given that DNS message has a complex structure, we apply
probabilistic context-free grammar (PCFG) [50] to generate
templates of client-queries and ns-responses first. A PCFG
consists of a start symbol (denoted <start>), non-terminal
symbols (symbols surrounded by <>), terminal symbols, pro-
duction rules, and rule probabilities. We assign high proba-
bilities to certain fields after analyzing CVEs, so the fuzzing
process can be directed towards the code regions that are

2A client-query can trigger a resolver to process multiple resolver-queries
and ns-responses. In this case, we just use the same ns-response.

critical but error-prone [127]3. A DNS query is allowed to
ask one or more questions (e.g., domain name) in the “Ques-
tion” section, and a response can contain multiple answering
records in the “Answer”, “Additional”, and “Authority” sec-
tions. However, letting the generator add an arbitrary number
of questions or answering records will introduce a very large
input space, which is also unlikely to trigger new bugs 4 .
Hence, we restrict the number of each section to range from 0
to 5 (for “Question”, only 1 QNAME is inquired). We also force
the counting field to contain the correct number of records
(e.g., ANCOUNT contains the right number of records in “An-
swer”). Field formats and additional rules are applied to fields
like QNAME to ensure their validity. In Appendix C, we list the
complete PCFG.

Similar to previous work in fuzzing network services [45,
46], we perform byte-level mutation on the PCFG-generated
message templates. We are motivated to do so for DNS as
recent work showed some DNS implementations fail to cor-
rectly decode strings with special characters embedded [48].
We consider mutating each terminal symbol of PCFG with
special bytes, such as \., \000, @, /, and \ (the first four
characters are also exploited by [48]). The mutation opera-
tors include byte addition, deletion, and replacement, and we
assign a probability to determine when the mutation should
happen. We set the probability to conduct byte-mutation on
a PCFG output as 0.1. In Algorithm 1 of Appendix D we
summarize the whole process for test generation.

4.3 Data Dumper and Oracle
We first dump the traces collected from the resolver containers
into the host and conduct data pre-processing. Then, we
design 3 oracles to detect the 4 types of resolver bugs.

3The code regions of our interests are identified by analyzing CVE reports
and reproducing CVE PoCs.

4For example, we reviewed the source code of BIND and found it rejects the
query with multiple questions. In response, each answer is matched with
the question but the number of answers does not impact the logic.
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Data dumper. Several previous works applied blackbox
fuzzing on web services [45, 46] by only using informa-
tion from the requests and responses. Though we also follow
the direction of blackbox fuzzing without instrumenting and
re-compiling the targeted resolvers, we collect information
in addition to requests and responses, including cache dump,
resolution traffic, software logs, and process status, to achieve
better coverage of bugs. The formats of cache dumps and soft-
ware logs vary for different resolver software, so we convert
them to unified formats with the methods described below.

For cache dumps, the formats of our studied software are
vastly different, as shown in Appendix F. For instance, as
shown in List 4 and List 6, BIND caches basic DNS mes-
sage information according to their sections, while Pow-
erDNS is more verbose and keeps more results like zone
and source. As the major goal of cache poisoning is to tamper
the records associated with a domain name [56], we define a
new cache structure that uses the cached domain names as the
key and common record fields including class, type, ttl,
and rdata as the values (shown in List 3). An alternative
approach to cache dump is cache snooping [35], which infers
the cache status of one record per query. We choose cache
dump because 1) it provides more information like where the
cached records come from and cache trust levels and 2) it is
also more efficient. For software logs, internal operations
and their parameters are usually recorded, which could be
utilized to detect abnormal behaviors during resolution, e.g.,
excessive cache searching. We implement a pattern-matching
method to search for log entries of our interests, and cate-
gorize them under keys such as CACHE LOOKUP, QUERY, and
SANITIZE RECORD. For each test case, we assign the pre-
processed cache dump, software logs, network traffic, and
process status from all resolvers to it.
Cache poisoning oracle. We design this oracle based on the
insights that the cache poisoning attack tampers the cache
storage and usually inserts forged records to hijack victim
domains [56], so the cache records are likely to differ among
the resolvers if some are vulnerable. We run differential
testing to find the cache anomalies. A number of previous
work on differential testing rely on a “golden model” to
compare against. For example, DIFUZZRTL detects bugs in
RISC-V CPU cores by comparing their RTL execution results
with a golden model OpenRISC Or1ksim [42]. However, we
cannot find a golden model for DNS resolvers: even the most
widely used resolver BIND has more than 100 CVEs reported.
Therefore, assuming the set of software studied by us is S , for
a software si ∈ S , we consider si is abnormal when its trace
differs from any s j ∈ S \{si}.

Specifically for cache, for each test case, we check whether
the cache records for all the resolver software are the same, by
comparing the records’ NAME, TYPE, and RDATA fields. After
this stage, we found there are still many test cases with incon-
sistent cache records based on our evaluation, so we perform
another round of bug triage by clustering the test cases. We

represent si ∈ S of each test case with the maximum number
of different records of the software i with other software. For
instance, < 0,0,0,5> means that software 1 to 3 has the same
cache, but software 4 has 5 additional cache records. Then,
we apply Bisecting K-Means, which outperforms the basic
K-Means in entropy measurement [106], on the cache vectors
to generate clusters and investigate each cluster to look for
vulnerabilities. Clustering is done for test cases under each
resolver mode separately.

For the vulnerability analysis, we employ a semi-automatic
method. By extracting information from the fields like NAME,
TYPE, RDATA, ZONE, etc., we create matching rules and use
them to separate test cases within a cluster into sub-clusters it-
eratively. For example, the sub-cluster for bug CP2 described
in Section 6.2 is generated based on the existence of the NS
record of the domain in the forwarding zone. Then each
sub-cluster is manually analyzed to confirm if it is related
to vulnerabilities: we randomly sample 1 test case per sub-
cluster and try to construct exploit. Though our vulnerability
analysis can be done without clustering, we found the investi-
gation overhead is significantly reduced after clustering.

Resource consumption oracle. Previous studies show that at-
tackers have the incentive to disrupt the operation of resolvers
or use the resolver to conduct DNS amplification attacks
against other servers [120]. We measure the resource con-
sumption with 4 metrics, derived from the resolver’s network
traffic and software logs, including the number of resolver-
queries, the sizes of responses (both ns-response and resolver-
response), the resolution timeout, and the frequency of inter-
nal operations (e.g., cache search).

For a metric (say m j), we compute its value distribution
within the same software (say si), and consider a test case
abnormal if si’s value on m j falls out of the normal range.
Specifically, we represent the value distribution as a Cumu-
lative Distribution Function (CDF), and consider the normal
range as [0,θ], where θ is the threshold and we set it to 0.9.
For instance, if the frequency of the cache search operations
of one test case is higher than 90% of all test cases in CDF,
this test case is considered abnormal. Then, similar to cache
oracle, we perform an iterative process of random sampling
and manual investigation (the clustering stage is skipped as
no differential testing is conducted here).

Crash oracle. To detect bugs related to memory and non-
memory crash, the resolver container simply monitors the
resolver process and considers anomaly happens when the
process is not running (i.e., not included in the output of ps
command). We acknowledge that this oracle is simple and
false negatives can happen (e.g., dangling pointers might not
trigger a crash). Though more complex oracles like Address-
Sanitizer [105] can detect more types of memory bugs, they
often require re-compilation, which is incompatible with our
blackbox fuzzing setting.
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5 Evaluation and Results

5.1 Implementation Details

For the tested resolvers, we choose the ones listed in Table 1,
and their versions are all latest during our evaluation period
(BIND: 9.18.0, Unbound: 1.16.0, Knot Resolver: 5.5.0, Pow-
erDNS Recursor: 4.7.0, MaraDNS: 3.5.0022, and Technitium:
10.0.1). For the testing infrastructure, the attacker client and
attacker server generate customized DNS messages using
Python language. When running the experiment, we force
the reset of a resolver container if it does not respond be-
fore a 5-second timeout. The test scheduler manages Docker
containers with Python Docker SDK [43]. Each software is
compiled based on Ubuntu 22.04 Docker image [71]. Within
the resolver containers, we are able to dump the cache from 4
software with existing tools or supported APIs: rndc [16] for
BIND, unbound-control [63] for Unbound, rec_control [97]
for PowerDNS, and Technitium’s HTTP API [116]. We are
unable to dump or decode the cache from MaraDNS and Knot,
so we evaluate them by replaying the tests that are proven to
impact other software on them. For the other nameservers in
the resolution change, we write them with the Go language
(for better performance) and configure their zone files to make
our attacker server reachable. Figure 13 in Appendix B shows
the zone file.

For the tests generator, we use different attacker domain
names (all starting with test-) to test different resolver
modes. For the oracles, we use a Python library scikit-
learn [93] to implement the clustering method.

We write in total of 3,649 lines of code (LoC) in Python
for the scheduler, tests generator, attacker client, and server.
We also write 318 LoC in Go and 203 LoC in JSON file
for the other nameservers. We use one workstation to run
RESOLVERFUZZ, which has an AMD 5950x CPU with 16
cores, 128 GB memory, and runs on Ubuntu 22.04.

5.2 Experiment Results

In total, RESOLVERFUZZ generates 718.6K test cases (each
case consists of a pair of query and response) within 65.9
hours. The testing inputs are evenly distributed among the
4 resolver modes. The traces collected from the resolver
containers occupy 1,892.9 GB of disk space. Below we first
describe the analysis results and the runtime performance of
RESOLVERFUZZ. Then, we compare RESOLVERFUZZ with
the other DNS fuzzers and conduct an ablation study to assess
the impact of several design choices. Finally, we conduct a
large-scale scanning to discover the open resolvers that are
impacted by our discovered vulnerabilities and present the
results in Appendix H.

Results from the oracles. The oracles for resource consump-
tion and crash & corruption are relatively simple (shown in
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Figure 3: Sum of Squared Error (SSE) to different k for
bisecting K-means of forward-only cache oracle.

Table 2). Here we focus on the cache-related oracle5. In Ta-
ble 5 of Appendix G, we show the results at different filtering
stages. Among the 718.6K testing case inputs, our differential
analysis filters out 461.2K (64.2%) inputs that trigger identi-
cal behaviors on the tested resolvers. The large ratio of the
remaining inputs indicates there is a great variety among the
resolver implementations, and an inconsistency usually does
not imply vulnerability. For example, there are 69,967 testing
cases with legitimate differences related to NSEC3 records
(“R2” in Table 5). NSEC3 records [6] are used to indicate
a non-exist domain in a secured way, preventing malicious
actors from sending fake negative responses to queries. We
find that NSEC3 records are cached aggressively by Unbound,
even when the DNSSEC validation option is turned off.

Among the inconsistencies, our clustering method gener-
ates 22 clusters, and we investigate each cluster to identify
the situation(s) about the inconsistencies, which are listed in
Table 5 as well. For example, the 180K data points for the
forward-only mode are grouped into 7 clusters by bisecting
K-means. We also identify that only BIND and Unbound
implement a fallback mechanism for when the forwarder can-
not receive a response with cluster C13 under column “R2”.
Overall, the results show that our testing oracles can signifi-
cantly reduce the manual efforts in locating the vulnerabilities.

Finally, we justify how a key parameter, k for K-means, is
selected. For the forward-only mode, k = 7 because the SSE
(sum of squared error) drops significantly at 7 and the slope is
gradually flattened after that, as shown in Figure 3. According
to elbow method [86], k should be set to such value to achieve
the best performance in clustering.
Analysis of tests generation. We perform statistical analysis
on test cases generated by RESOLVERFUZZ to understand
their main characteristics. We randomly sample 5K test cases
for each mode, 20K in total, and parse the DNS messages
of queries and responses. Figure 4(a) shows the distribution
of key fields, including TYPE, RCODE, OPCODE, etc. Results
show that our fuzzer achieves good coverage of different field
values, and the rule probabilities of PCFG ensure certain code
logic is tested more intensively. For example, about 80%
tests have OPCODE set to QUERY, the other DNS modes that
are not related to resolution (like NOTIFY) have much fewer

5The cache oracle is able to discover both cache poisoning and cache-related
resource consumption bugs, like RC2 in Section 6.
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test cases.
We also inspect the resolver-responses triggered by the

client-queries and Figure 4(b) shows the distribution. Only
17.8% of the tests have RCODE that equals NOERROR, suggest-
ing our test cases are prone to trigger errors, potentially bugs.
We have also observed that 20.7% of the test cases reach
timeout without getting a reply.
Runtime performance. After measuring the effectiveness of
RESOLVERFUZZ, we measure the efficiency of RESOLVER-
FUZZ, focusing on its testing throughput. Here we employ
Queries per second (QPS) as the metric, which shows how
many cases from the generator are tested per second. We
measure the QPS for different resolver modes and different
numbers of units, and Figure 5 shows the results. CDNS with
fallback mode is only supported by BIND and Unbound. For
the other 3 modes, all resolver software is tested. For the de-
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Figure 6: The number of vulnerabilities discovered along the
time spent by RESOLVERFUZZ.

fault setting (25 units), tests against CDNS with fallback have
2x throughput (5.9 QPS) than the other modes (2.7 - 2.8 QPS).
The main reason is that MaraDNS and PowerDNS are slower
in responding to client-queries, and RESOLVERFUZZ reset-
ting all resolvers synchronously for each test round. Besides,
pre- and post-processing, such as nameserver initialization,
slow down the tests and reduce QPS. Still, our result is com-
parable to other network fuzzers: e.g., T-Reqs achieves 7.9
QPS in HTTP fuzzing (“Request body” of Table 2 in [46]).

We also measure the impact of the unit number on the
throughput, and Figure 5 shows the trend. The throughput
peaks for “CDNS with fallback” mode when 35 units are
used. For the other modes, the throughput peaks at 25 units.
Compared with single-unit execution, a 19-time throughput
increase is observed. The peak throughput is limited by our
workstation setup (only 32 threads can be run concurrently).

Trend of vulnerability discovery. We discovered 23 vulner-
abilities in total and we elaborate them in Section 6. Here
we measure the number of vulnerabilities discovered from all
the resolvers with regard to time spent. In Figure 6(a), we
demonstrated our result in 4 resolver modes. As a vulnerabil-
ity often relates to a number of test cases, we use the first test
case to log the vulnerability discovery time. After 5 hours, all
vulnerabilities were discovered, suggesting RESOLVERFUZZ
can discover vulnerabilities efficiently. The number of vul-
nerabilities discovered differ by modes, since 1) CDNS with
fallback mode is only supported by BIND and Unbound, and
2) some vulnerabilities cannot be triggered in all modes.
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5.3 Comparison and Ablation Study

Comparison with other fuzzers. Section 2.3 compares RE-
SOLVERFUZZ with other tools that discover DNS bugs briefly.
Here, we provide detailed quantitative comparison with base-
line DNS fuzzers including dns-fuzz-server, DNS Fuzzer and
SnapFuzz. We run these systems and monitor crash, which is
the default bug type considered by them.

We first compare with dns-fuzz-server [109], which com-
bines grammar-based and byte-level mutation, but tests a
resolver in a stateless way. It consists of a fuzz-client, which
sends client-queries, and a fuzz-server, which serves as an
nameserver and sends ns-responses, however there is no coor-
dination between these two components. We run dns-fuzzer-
server to test BIND in the 4 resolver modes and set the interval
between test cases to 0.2 seconds. Each mode was tested for
10 hours (180K test case generated for each mode, similar
as RESOLVERFUZZ), but no crash was triggered. We found
most of the ns-responses are simply refused by BIND because
they do not have matched resolver-queries and client-queries.

Different from dns-fuzzer-server, DNS Fuzzer [38] only
implements fuzz-client and only performs byte-level mutation
on seed DNS messages. We also test it against BIND and set
the interval between test cases to 0.1 seconds, which yield
180K test cases for each resolver mode in 10 hours. Again,
no crash was triggered. The traffic analysis shows that most
of the mutated client-queries fail to pass the resolution of
BIND. The rest of client-queries mostly ended up with time-
out because the resolver does not receive ns-responses from a
nameserver.

We tried to run SnapFuzz on BIND but it turns out Snap-
Fuzz does not support BIND6. Meanwhile, we found Snap-
Fuzz is built on top of AFLNet [96] and speeds up AFLNet by
7x when fuzzing Dnsmasq [5]. Hence, we take an alternative
approach to run the AFLNet baseline inside the SnapFuzz
repo for 7 days against BIND (also 4 modes), but no crash
was detected. Though AFLNet conducts greybox fuzzing
to improve the quality of test cases, it only simulates client-
queries (implemented by the SnapFuzz repo), which is prone
to generate DNS messages easily rejected by the resolver.

To summarize, no crash has been identified by the baselines,
suggesting finding crash bugs from the intensively tested
resolvers like BIND is non-trivial. RESOLVERFUZZ is able
to trigger 1 crash (CC1 described in Section 6.3).
Length of message sequence. RESOLVERFUZZ generates
short message sequences based on the insights of our CVE
study described in Section 2.2. Here we evaluate whether gen-
erating long message sequence can yield new vulnerabilities.
We tested BIND under the CDNS with fallback mode and set
the new sequence length to 5, such that 5 query-response pairs

6SnapFuzz hooks system calls to directly learn when the tested server is
able to receive a new request, so there is no need to set a fixed interval
between test cases. However, SnapFuzz does not support system calls
invoked through epoll [101], which is extensively used by BIND.

are sent to BIND in each round. Each message pair is inde-
pendently generated. In the end, we did not discover any new
vulnerability. Interestingly, RESOLVERFUZZ triggers vulner-
ability faster than the short sequence, as shown in Figure 6(b).
This is because all the message pairs in one round share the
same cache, so the time spent on querying root and TLD
servers can be saved. However, such a performance boost is
rather small. Admittedly, the way we generate the message
pairs can be optimized by considering their dependencies,
however, such change is non-trivial.
PCFG probabilities. We assign different probabilities to dif-
ferent terminals when generating message templates under
PCFG, as described in Section 4.2. Here we assess the im-
pact of this design choice, by evaluating a simpler setting
that assigns the equal probability to each terminal shown in
List 1 and List 2. Again, no new vulnerabilities are discov-
ered and we also found the pace of vulnerability discovery is
significantly slowed down, as shown in Figure 6(b). The main
reason is that messages are more likely to be rejected before
reaching the deep code logic. For instance, the probability of
NOERROR in RCODE is assigned to 0.8 under our default setting.
However, if the probability is assigned equally, the probability
of NOERROR is reduced to 0.091, and most of the responses
will be trivially rejected.

6 Discovered Vulnerabilities

We identify 23 vulnerabilities with the help of RESOLVER-
FUZZ: cache poisoning (13), resource consumption (9), and
crash & corruption (1). After in-depth discussions with re-
lated vendors, 19 of these bugs have been confirmed or fixed,
and 15 CVEs have been assigned. As shown in Table 2, we
categorize these bugs into 12 classes including CP1-CP4,
RC1-RC7, and CC1, and list the number of vulnerable test
cases in the note. Below, we first describe the concrete threat
model and then elaborate on each bug group.

6.1 Cache Poisoning Bugs

Concrete threat model. Different from the previous work
that either considered recursive mode only [72] or forward
mode only [128], we consider the 4 resolver modes as de-
scribed in Section 2.1 and configure the cache accordingly.
Specifically, the target resolver has two DNS zones. Client-
queries matching the forwarding zone ZF are directly for-
warded to an upstream server (resolver-queries QF ), and
client-queries matching the recursive zone (ZR) will trigger
recursive resolution (resolver-queries QR). Both forwarding
and recursive mode share a global cache.

When launching an attack, the attacker sends a client-
query (Q) to the target resolver, then provides malicious
ns-responses (Rattack) to the resolver prior to the arrival of
legal responses (RF or RR). After accepting the malicious
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Table 2: Identified bugs and test cases of six mainstream DNS software.

Software*
Cache poisoning Resource consumption

Crash&

TotalCorruption

CP1 CP2 CP3 CP41 Tot.2 RC1 RC2 RC3 RC4 RC5 RC6 RC7 Tot. CC1

BIND ✓† ✗ ✓ ✓ 3 ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0 ✓ 4
Unbound ✗ ✗ ✓ ✓† 2 ✗ ✓ ✓ ✗ ✓ ✓ ✗ 4 - 6

Knot ✓† ✗ ✓† ✓† 3 ✗ ✗ ✗ ✗ ✗ ✗ ✓† 1 - 4
PowerDNS ✗ ✓† ✗ ✓† 2 ✓† ✗ ✓† ✗ ✗ ✗ ✗ 2 - 4
MaraDNS ✗ ✗ - ✓† 1 ✗ ✗ ✗ ✓† ✗ ✗ ✗ 1 - 2
Technitium ✓† ✗ - ✓† 2 ✗ ✗ ✗ ✓† ✗ ✗ ✗ 1 - 3

Total 3 1 3 6 13 1 2 1 2 1 1 1 9 1 23
*: Recursive or forwarding modes. 1: They are triggered by different responses and their cache are inconsistent. 2: Total. ✓or ✓: Vulnerable.
✓: Discussed but no immediate action. ✓: Confirmed and/or fixed by vendors. ✗: Not vulnerable. †: CVEs assigned. ‘-’: Not applicable.
# Amount of test cases: CP1 (19), CP2 (1,422), CP3 (111,328), CP4 (7,856), RC1 (539,745), RC2 (112,126), RC3 (88,935), RC4 (132), RC5 (272)

RC6 (6,264), RC7 (4,448), and CC1 (5).
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Figure 7: Threat model of cache poisoning bugs.

responses, the global cache and client would save the tam-
pered answers. When the attacker is not on the resolution path
between the client and the intended nameserver, the attacker
can conduct IP spoofing and port guessing for the off-path
cache poisoning [72, 73, 112]. The concrete threat model is
shown in Figure 7.
CP1: Out-of-bailiwick cache poisoning. The bailiwick rule
requires that authoritative servers should not return data out-
side of their controlled zones [31]. For example, responses
from .com should not include data of other zones like .net.
Correspondingly, when receiving out-of-bailiwick data, re-
solvers should discard it before caching. However, when
testing CDNSes with fallback, we found BIND accepts out-
of-bailiwick data. Knot and Technitium are also identified to
have this issue in further tests.

For a resolver-query QF sent to our authoritative server,
such as atkr-fwd.com, these three resolvers will cache ev-
ery record in the auth-responses generated by our mutator,
even including the out-of-bailiwick records shown in Fig-
ure 8(a). In this example, since the forged NS records of .com
with a AA flag have a higher ranking [31], resolvers would
opt to overwrite existing cached records and utilize them for
future resolution. Then, following the records of “Authority”
and “Additional” Sections, the resolvers would request the at-
tacker’s nameserver ns.atkr-fwd.com for all queries under
the .com zone, which allows the attacker to hijack the entire

Header: TXID; QR AA;

Question section:
atkr-fwd.com. A
Answer section:
atkr-fwd.com. A x.x.x.x
Authority section:
com. NS ns.atkr-fwd.com.
Additional section:
ns.atkr-fwd.com. A a.t.k.r

(a) Auth-response for CP1.

Header: TXID; QR AA;

Question section:
vctm-fwd.com. A
Answer section:
vctm-fwd.com. A x.x.x.x
Authority section:
s.vctm-fwd.com. NS ns.vctm-fwd.com.
Additional section:
ns.vctm-fwd.com. A a.t.k.r

(b) Auth-response for CP2.

Header: TXID; QR AA;
...
Answer section:
victim.com. A x.x.x.x
...
victim.com. RRSIG xxx…x

(c) 1st fragment for CP3.

Authority section:
victim.com. NS ns.victim.com.

Additional section:
ns.victim.com. A a.t.k.r

(d) spoofed 2rd fragment for CP3.

Header: TXID; QR AA; 
Question section:
s.atkr-rev.com. A
Answer section:
s.atkr-rev.com. A a.t.k.r
Authority section:
s.atkr-rev.com. NS ns.atkr-rev.com.
Additional section:
ns.atkr-rev.com. A a.t.k.r

(e) Auth-response for CP4.

Header: TXID; QR AA; 
Question section:
s.atkr-rev.com. A
Answer section:
(Empty)
Authority section:
s.atkr-rev.com. NS ns.atkr-rev.com.
Additional section:
ns.atkr-rev.com. A a.t.k.r

(f) Ref-response for CP4.

Figure 8: DNS responses utilized for cache poisoning attacks.
Red parts carry the attack payloads.

TLD zone. After discussion, all affected vendors confirmed
this vulnerability and patched their software. We received 3
CVEs and the detailed study is presented in [69].

CP2: In-bailiwick cache poisoning. When the client-
query matches a domain name in the forwarding zone, e.g.,
vctm-fwd.com, all software except PowerDNS simply for-
wards the query to the upstream server and waits for re-
sponses. However, PowerDNS first searches its cache for
nameservers. If there is a cache hit, it follows the name-
server records and finishes the resolution. Otherwise, it sends
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resolver-queries to the upstream server. After receiving a
response with additional nameserver information like Fig-
ure 8(b), PowerDNS will cache every record. Hence, this dif-
ference makes cache poisoning more powerful for PowerDNS:
when the attacker conducts off-path cache poisoning, she just
needs to tamper one NS record (e.g., s.vctm-fwd.com) dur-
ing forwarding, and all the follow-up queries under the zone
of s.vctm-fwd.com will be tampered (e.g., redirected to the
attacker server a.k.t.r). For the other software, the attacker
has to tamper every query.
CP3: Fragmentation-based cache poisoning. According
to [14, 128], attackers could leverage IP fragmentation to
initiate a DNS cache poisoning attack. This attack exploits the
fact that the second fragment of a fragmented DNS response
packet contains neither UDP nor DNS headers, thus it is much
easier to spoof this fragment as there is no need to guess the
UDP source port or DNS TXID. During an attack, attackers
first send the spoofed second fragment (e.g., Figure 8(d)) to
the target resolver, then issue a query for the victim domain
whose nameserver will return fragmented DNS packets. After
receiving the first fragment shown in Figure 8(c), the target
resolver will resemble it with the previously cached second
fragment, resulting in a rogue DNS response to be accepted.

Though RESOLVERFUZZ does not directly generate frag-
mented packets, this bug was discovered because RESOLVER-
FUZZ can generate large-size DNS messages (e.g., exceed-
ing the general 1,500-byte MTU limit for Ethernet) [39].
Through traffic analysis, RESOLVERFUZZ found that BIND,
Unbound, and Knot allow fragmented ns-responses to be
larger than 1,232 bytes and even 4,096 bytes, whereas the
other software only accepts ns-responses less than 1,232
bytes. Attackers could exploit nameservers that return large
DNS responses or utilize the techniques in [128] to conduct
fragmentation-based cache poisoning attacks.
CP4: Iterative subdomain caching. During fuzzing, we
discover that software including BIND, Unbound, Knot,
and PowerDNS will accept unsolicited records from auth-
responses (e.g., records in the Authority and Additional
section Figure 8(e)), while MaraDNS and Technitium will
store the records in the ref-responses like Figure 8(f). Af-
ter caching these records, resolvers will use them to serve
future queries. For example, upon receiving a query for
s.atkr-rec.com, resolvers will send queries straight to the
nameserver ns.atkr-rec.com rather than iteratively query-
ing the root and TLD servers.

Inspired by this behavior, we introduce a new attack in
which the attacker could iteratively inject NS records of sub-
domains into the resolver’s cache. Especially, when NS
records of s.atkr-rec.com are about to expire, attackers
return nameserver data of s.s.atkr-rec.com, enabling the
target resolver to still be able to resolve domains under it,
and for s.s.s.atkr-rec.com so on. In this manner, even
if atkr-rec.com is revoked from the .com zone, the target
resolver will continue to resolve a group of subdomains of
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Figure 9: Threat model of resource consumption bugs.

atkr-rec.com for a very long time. This attack is an exten-
sion of the previous “ghost domain attack” [51] that defeats
domain sinkholing [3]. All vendors of tested software have
confirmed this vulnerability and some have fixed it. We ob-
tained 5 CVE numbers and the detailed study was presented
in [67].

6.2 Resource Consumption Bugs

Concrete threat model. Through a small number of client-
queries and/or auth-responses, the attacker occupies a large
portion of cache storage, triggers excessive resolver-queries,
or consumes large computation overhead on the victim re-
solver. Figure 9 shows the threat model.
RC1: Excessive cache search operations. When running
in forward-only mode, only PowerDNS looks up its local
cache for trust anchors and NS records before sending it to a
server, while the others just forward the client query to up-
stream servers. For example, for a query of s.atkr-fwd.com
under the forwarding zone atkr-fwd.com, PowerDNS
searches its cache following the order of s.atkr-fwd.com,
atkr-fwd.com, .com, and the ROOT server until finding an
existing NS record, by removing one label each round. This
process is repeated three times. Therefore, attackers could
construct a domain name containing 128 labels (the maximum
number) to trick PowerDNS to perform 384 cache search op-
erations, which is much more than other software (i.e., 1).
RC2: Unlimited cache store operations. When receiving
auth-responses, Unbound caches all in-bailiwick records from
the “Authority” and “Additional” sections into the cache re-
gardless of their validity. According to DNS RFC [7, 83],
only NS, SOA, and DNSSEC-related records are permitted in
the “Authority” section, while glue records are allowed in the
Additional section. Unbound does not implement this rule
and stores all types of records, allowing attackers to squander
cache storage. After discussion, Unbound’s developers have
included a sanitizer to filter out invalid records.
RC3: Ignoring the RD flag. DNS RFCs [83] require re-
solvers to issue queries to upstream servers only if they re-
ceive client queries with the Recursive-Desired flag set (RD=1),
and refrain from follow-up queries when RD=0. However, Un-
bound and PowerDNS still forward client queries to upstream
servers when RD=0, under the forwarding mode. The attacker
can exploit this bug by directing the follow-up queries to
her domain, and point the nameserver in her DNS zone back
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to the resolver, which results in a query loop and potential
amplification attack. The detailed study is presented in [126].
RC4: Following a self-CNAME reference. The CNAME
record is used to map an alias name to a canonical name (e.g.,
www.cnn.com to cnn-tls.map.fastly.net) [83]. Upon de-
tecting a CNAME loop (i.e., responses with a CNAME record
having the same alias name and canonical name), the cur-
rent resolution process should terminate. However, Unbound,
MaraDNS, and technitium will chase the CNAME loop for
12, 113, and 289 times. Moreover, technitium will provide
the client with a response including 289 CNAME records.
Attackers could craft a self-CNAME record to consume re-
solvers’ resources by triggering more outgoing queries and
sending large responses for amplification attacks. MaraDNS
and Technitium have confirmed this vulnerability and patched
their latest versions. 2 CVE numbers have been assigned.
RC5: Large responses to clients. Large DNS responses
have been used extensively in DNS reflection amplification
attacks [84]. When analyzing the packet size, our traffic oracle
discovered that Unbound enables a maximum packet size of
4,096 bytes, whereas the other software restricts it to less than
1,232 bytes. This suggests Unbound could provide a three-
fold amplification ratio compared to other software. After
disclosing our findings, Unbound has changed its maximum
UDP packet size to 1,232 bytes by default.
RC6: Overlong waiting time over UDP. After receiving an
ns-response modified by our byte-level mutator, Unbound
continues to issue 9 resolver-queries and waits up to 17 sec-
onds for a legal ns-response. In contrast, other software just
discards the invalid ns-responses and does not follow up with
resolver-queries. Hence, an attacker can send a large number
of such malformatted ns-responses to Unbound, extend the
resolver’s waiting time and consume its resources.
RC7: Excessive queries for resolution over TCP. Similar to
RC6, upon receiving an invalid ns-response via TCP, Knot Re-
solver continues to issue 100 resolver-queries for a legitimate
response, thus bypassing the restriction (5 resolver-queries
at maximum) used to defend against the powerful NXNSDo-
main attacks [60]. After discussion, Knot acknowledged and
fixed this vulnerability. The detailed study is shown in [70].

6.3 Crash Bugs

Concrete threat model. The attacker sends client-queries or
auth-responses to cause memory or non-memory crash.
CC1: Assertion failure when receiving queries. We found
an assertion failure occurs when BIND receives the byte-
mutated client-queries using the udp_recv function, which
crashes the resolver service. After reading the source code,
we identified this bug in the udp_recv dispatching process,
which returns a success code but cancels the query in the
meantime, violating the assertion that ensures the current
udp_recv process receives a valid DNS packet. We found

BIND fixed this issue in version 9.18.3 [10], but their test
case is different from ours.

7 Discussion

Limitations and future work. 1) Our test cases are unable
to cover all sorts of DNS messages (e.g., no DNAME), as it
incurs extensive manual efforts in writing PCFG, and only a
subset of DNS message types are actively used. 2) We did
not test all DNS-related functionalities, like DNSSEC, due
to their different logic from the normal resolver actions, i.e.,
caching records. 3) We test the stateful resolver with a pair
of query and response. Admittedly, some complex bugs that
are introduced by long sequences cannot be found. 4) We
set a fixed timeout value to 5 seconds, but this is not optimal
when the resolver is stuck before the timeout. SnapFuzz
enables adaptive timeout on networking software by rewriting
its code [5] and our problem can be solved by this approach.
5) We conduct a blackbox fuzzing without relying on the code
coverage as feedback. The main reason is that we have not
found an ideal metric for the different types of semantic bugs.
We plan to continue to explore the combination of coverage-
based and grammar-based fuzzing, like [123]. 6) We follow
other works (e.g., [130]) to analyze CVEs and assess which
type of bugs is more prevalent (e.g., short sequence triggers
more bugs). Admittedly, such analysis could suffer from
survivorship bias (e.g., bugs triggered by short sequence are
easier to find, hence more CVEs). 7) We use differential
testing to discover cache poisoning bugs, assuming at least
one implementation is correct. However, when the RFC is
erroneous and all implementations follow the RFC, such bugs
are unlikely to be discovered.

Ethical considerations. 1) Fuzzing the resolver within the
standard DNS infrastructure could affect the other remote
nameservers, as described in Section 4.1. Hence, we localize
the root and TLD servers in our lab network, which improves
the efficiency of RESOLVERFUZZ. 2) For the measurement
study described in Appendix H, we scanned the whole IPv4
network space. We follow the common practice in Internet-
wide scanning, by setting the maximum probing rate to 10
kps and evenly distributing the traffic across the target. Like
XMap which also scans IPv4 network space [68], we created a
website to receive the opt-out requests and a PTR record using
our scanner’s source IP to show our research intention. We
received no opt-out requests during the period of experiments.
We admit that such an approach cannot entirely mitigate the
ethical issues, as getting informed consent for large-scale
Internet measurement is very difficult [91]. We tried our best
to follow the best practices.
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8 Related Work

Network protocol fuzzing. Various fuzzing techniques have
been applied to test network protocols in addition to DNS.
AFLNet uses the response code from the server as the feed-
back to generate sequences of messages [96]. SGFuzz uncov-
ers the state space of a protocol (e.g., HTTP2) from the “enum”
variables defined in source code [8]. For TCP, TCP-Fuzz
improves the coverage of TCP states with a new branch transi-
tion metric [130]. For TLS, grammar-based fuzzing has been
applied to generate test cases from specifications [111, 122].
Fiterau et al. extended [111] to test DTLS [32]. For HTTP,
T-Reqs detects HTTP smuggling vulnerabilities by finding
the inconsistencies in how servers split an HTTP request [46].
Frameshifter identifies HTTP/2-to-HTTP/1 protocol conver-
sion anomalies by mutating the HTTP/2 frame sequence [45].
For QUIC, DPIFuzz identifies new elusion methodologies
for an attacker to evade QUIC-based Deep Packet Inspection
(DPI) [98].

We found none of the prior works can be directly applied
to DNS resolvers, due to the different protocol semantics and
vulnerability types (e.g., cache poisoning). RESOLVERFUZZ
addresses these challenges with a new fuzzing framework and
a set of techniques.
Differential testing. RESOLVERFUZZ leverages the incon-
sistencies between DNS resolvers to identify semantic bugs,
in particular cache bugs. Differential testing also exploits
this insight to identify semantic bugs, which has been applied
in various scenarios, including JIT compilers [9], transient
execution [41], browser rendering [113], internal function
models in symbolic execution [66], CPU bugs [42], soft-
ware time/space side-channels [88], deep-learning stacks [37],
hostname verification in SSL/TLS [110], packet parsing by
front-/back-end servers [107], DPI [124, 125], JVM imple-
mentations [15], malware analysis [47], file systems [79], Ad
blockers [129], etc. Among these works, [107, 124, 125] are
about network services, and we discuss them in details. HDiff
generates HTTP messages to detect HTTP Request Smug-
gling attack, Host of Troubles attack and Cache-Poisoned
Denial-of-Service Attack [107]. It extracts syntax rules from
RFC and use them to detect implementation discrepancies,
however, there lacks precise specifications of resolver be-
haviors. SYMTCP automatically discovered insertion and
evasion TCP packets against DPI middleboxes [124]. It
uses symbolic execution to generate TCP state machines of
endhosts and observe their discrepancies given TCP packets.
Themis tackles a similar problem but detects the discrepancies
by comparing the TCP state machines statically and finding
the counterexample through a SAT solver [125]. However,
DNS resolvers do not have well-defined state machines.

In addition to the efforts of adjusting differential testing
to specific scenarios, some works have investigated general
strategies. Nezha proposed λ-diversity notation for fuzzing to
increase the chances of finding inconsistencies [95]. HyDiff

combines symbolic execution with greybox fuzzing to find
semantic bugs [89]. In our setting, since we conduct blackbox
fuzzing, the metrics and methods proposed by those works
do not directly apply.
DNS resolver vulnerabilities. Section 2.2 reviews DNS vul-
nerabilities from the published CVEs. Here, we survey the
related academic works. The major interests were centered
around cache poisoning bugs, and many found that forwarders
are more vulnerable [40, 102, 104, 112, 114, 128]. Jeitner et al.
identified semantic inconsistencies in DNS input validation
and proposed new string injection attacks for cache poison-
ing [48]. Recently, Jeitner et al. found special characters
can be exploited for DNS cache poisoning attacks against
routers [49]. So far, finding resolver bugs requires heavy
manual analysis, and RESOLVERFUZZ sheds light on how to
automate this process with fuzzing.

When the attacker is not on the resolution path, a mali-
cious response needs to be forged and raced against the le-
gitimate response. In this case, the defense mechanisms
based on randomization, like port randomization and TXIDs,
have to be bypassed. Port brute-forcing [56], birthday at-
tacks [112,114], IP fragmentation [39,128], ICMP-based side
channels [72,73] and exploiting weak pseudo random number
generator (PRNG) in the Linux kernel [59] have been pro-
posed to achieve such goal. Dai et al. showed that following
off-path cache poisoning, Internet resources like IP addresses,
domains, certificates, and virtual platforms can be controlled
by attackers [26]. The aforementioned vulnerabilities exploit
side-channel information of DNS resolution. Though they
cannot be directly discovered by RESOLVERFUZZ, combined
with the vulnerabilities discovered by RESOLVERFUZZ, more
powerful off-path cache poisoning attacks can be enabled (see
CP2 of Section 6.1.

9 Conclusion

In this work, we develop a new blackbox fuzzing system
RESOLVERFUZZ that is tailored to find DNS resolver vulner-
abilities. Based on our study of the published DNS CVEs,
RESOLVERFUZZ is designed with a set of novel techniques,
including constrained stateful fuzzing, differential testing, and
grammar-based fuzzing. Our evaluation results show that RE-
SOLVERFUZZ is effective in finding resolver bugs, with 23
vulnerabilities discovered and 15 CVEs assigned.
Lessons learnt. Despite that DNS resolvers were extensively
tested (e.g., BIND has joined Google OSS-Fuzz project to be
automatically fuzzed [34]), we can still discover many vulner-
abilities in their latest versions. We believe the main reason is
that bugs unique to DNS resolvers are still challenging to be
discovered with the existing tools, and we hope this study can
shed light on this understudied area. Besides, lacking rigor-
ous specifications also contributes to the existence of resolver
bugs [84,112], as reflected by the high number of inconsisten-
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cies observed during testing. Like prior work, we encourage
the Internet community to work together and develop formal
guidance about secured resolver implementations.
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CVE-2022-3736 PUBLISHED
named configured to answer from stale cache may terminate unexpectedly while 
processing RRSIG queries

Assigner: ISC
Published: 2023-01-25 Updated: 2023-01-25

BIND 9 resolver can crash when stale cache and stale answers are 
enabled, option stale-answer-client-timeout is set to a positive 
integer, and the resolver receives an RRSIG query.

Product Status

References
• https://kb.isc.org/docs/cve-2022-3736
• ……

Vendor
ISC
Product
BIND9

Versions
• affected at Open Source Branches 9.16.12 -> 9.16.36, 9.18.0 -

> 9.18.10, 9.19.0 -> 9.19.8
……

Figure 10: An example of a published CVE report.

Figure 11: The Git commit related to CVE-2022-3736.

in {TCP} stacks with fuzzing. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21), pages 489–502,
2021.

A CVE Details

Process of CVE analysis. Our CVE study in Section 2.2
characterizes each CVE by its impacted DNS modes (e.g.,
resolver or nameserver), impacted software, bug type, and the
trigger condition (e.g., the related DNS field and the message
sequence length). The first three categories can be readily
learnt from the CVE reports. For the last one, we found
some software vendors include detailed description about the
trigger condition (e.g., the report of CVE-2022-3736 under
BIND has the details about the trigger condition, as shown in
Figure 10). Besides, we can also synthesize a possible trigger
condition from the patch described in the git commits (e.g.,
the commit to fix CVE-2022-3736, as shown in Figure 11,
indicates a RRSIG query is the trigger [62]).
CVE-2022-3736 [2]. The attacker could trick a BIND re-
solver, which is configured to answer from a stale cache, to
terminate unexpectedly by sending just one RRSIG query. Un-

der the stale cache configuration [64], BIND would attempt
to return expired records in the cache to clients if authorita-
tive servers do not reply. However, BIND does not provide a
complete and correct implementation of the stale cache mech-
anism for the RRSIG query. Upon receiving a RRSIG query
with the stale option set, BIND terminates due to the assertion
failure qtype != RRSIG.
CVE-2022-3924 [19]. By sending multiple queries to BIND,
the attacker would drive BIND with the stale option enabled
into a race condition and eventually crash. After receiving a
large number of queries for recursive resolution, BIND pro-
cesses each one from the query queue separately and makes
all clients wait for responses. When a new client query is
received, limited by the total number of clients, BIND will
reply to the client who has the longest waiting time with the
SERVFAIL response. However, under the stale configuration,
a race condition could occur between providing a stale answer
and response timeout, which might cause BIND to crash.

B Resolver and Zone Configurations

Figure 12 shows examples of the configuration files under
the 4 tested modes. Figure 12(d) shows the zone file of our
nameservers.

C PCFG Details

List 1 and List 2 show the detailed PCFG for generating DNS
query and response packet.

⟨start⟩ ::= ⟨query⟩
⟨query⟩ ::= ⟨Header⟩⟨Question⟩
⟨Header⟩ ::= ⟨TransactionID⟩⟨Flags⟩⟨RRs⟩
⟨TransactionID⟩ ::= (randomly generated 2-byte hex value)
⟨Flags⟩ ::= ⟨QR⟩⟨OPCODE⟩⟨AA⟩⟨TC⟩⟨RD⟩⟨RA⟩⟨Z⟩⟨AD⟩⟨CD⟩⟨RCODE⟩
⟨QR⟩ ::= 0
⟨OPCODE⟩ ::= QUERY[.80] | IQUERY[.04] | STATUS[.04] |

NOTIFY[.04] | UPDATE[.04] | DSO[.04]
⟨AA⟩ ::= 0 | 1
⟨TC⟩ ::= 0 | 1
⟨RD⟩ ::= 0 | 1
⟨RA⟩ ::= 0 | 1
⟨Z⟩ ::= 0 | 1
⟨AD⟩ ::= 0 | 1
⟨CD⟩ ::= 0 | 1
⟨RCODE⟩ ::= NOERROR[.80] | FORMERR[.01] | SERVFAIL[.01] |

NXDOMAIN[.01] | NOTIMP[.01] | REFUSED[.01] | YXDOMAIN
[.01] | YXRRSET[.01] | NXRRSET[.01] | NOTAUTH[.01] |
NOTZONE[.01] | DSOTYPENI[.01] | BADVERS[.01] | BADKEY
[.01] | BADTIME[.01] | BADMODE[.01] | BADNAME[.01] |
BADALG[.01] | BADTRUNC[.01] | BADCOOKIE[.01]

⟨RRs⟩ ::= ⟨QDCOUNT⟩⟨ANCOUNT⟩⟨NSCOUNT⟩⟨ARCOUNT⟩
⟨QDCOUNT⟩ ::= 1
⟨ANCOUNT⟩ ::= 0
⟨NSCOUNT⟩ ::= 0
⟨ARCOUNT⟩ ::= 0
⟨Question⟩ ::= ⟨QNAME⟩⟨QTYPE⟩⟨QCLASS⟩
⟨QNAME⟩ ::= (base domain)[.40] |

(sub-domain)[.40] |
(2-9th sub-domain)[.10] |
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options {
recursion yes;
// includes the entire namespace

}

(a)

options {
recursion no;
// disables recursive resolution
forwarders {

x.x.x.x port 53;
}
// forward the entire zone “.” to an upstream server

}

(b)

options {
recursion yes;

}
// create a forward zone for test-cdns.example.com
zone “test-cdns.example.com” {

type forward;
forwarders { x.x.x.x port 53; };
forward only; // fallback mode disabled

}

(c)

options {
recursion yes;

}
// create a forward zone for test-cdns.example.com
zone “test-cdns.example.com” {

type forward;
forwarders { x.x.x.x port 53; };
forward first; // fallback mode enabled

}

(d)

Figure 12: Example BIND configs of a) recursive-only, b) forward-only, c) CDNS without fallback, and d) CDNS with fallback.

ns.example.com. A x.x.x.x
test-recursive.example.com. NS ns.example.com
test-fwd-only.example.com. NS ns.example.com
test-cdns.example.com. NS ns.example.com

Figure 13: Zone file of example.com. ns.example.com is
pointed to the nameserver with the A record. Three test-*
subdomains of example.com are used to receive the resolver-
queries of different modes. Both CDNS without fallback and
CDNS with fallback modes use test-cdns.example.com.

(10-max sub-domain)[.10] |
⟨QTYPE⟩ ::= A | NS | CNAME | SOA | PTR | MX | TXT | AAAA |

RRSIG | SPF | ANY
⟨QCLASS⟩ ::= IN

Listing 1: PCFG for DNS query.

⟨start⟩ ::= ⟨response⟩
⟨response⟩ ::= ⟨Header⟩⟨Answer⟩⟨Authority⟩⟨Additional⟩
⟨Header⟩ ::= ⟨Flags⟩⟨RRs⟩
⟨Flags⟩ ::= ⟨QR⟩⟨OPCODE⟩⟨AA⟩⟨TC⟩⟨RD⟩⟨RA⟩⟨Z⟩⟨AD⟩⟨CD⟩⟨RCODE⟩
⟨QR⟩ ::= 1
⟨OPCODE⟩ ::= QUERY[.80] | IQUERY[.04] | STATUS[.04] |

NOTIFY[.04] | UPDATE[.04] | DSO[.04]
⟨AA⟩ ::= 0 | 1
⟨TC⟩ ::= 0 | 1
⟨RD⟩ ::= 0 | 1
⟨RA⟩ ::= 0 | 1
⟨Z⟩ ::= 0 | 1
⟨AD⟩ ::= 0 | 1
⟨CD⟩ ::= 0 | 1
⟨RCODE⟩ ::= NOERROR[.80] | FORMERR[.01] | SERVFAIL[.01] |

NXDOMAIN[.01] | NOTIMP[.01] | REFUSED[.01] | YXDOMAIN
[.01] | YXRRSET[.01] | NXRRSET[.01] | NOTAUTH[.01] |
NOTZONE[.01] | DSOTYPENI[.01] | BADVERS[.01] | BADKEY
[.01] | BADTIME[.01] | BADMODE[.01] | BADNAME[.01] |
BADALG[.01] | BADTRUNC[.01] | BADCOOKIE[.01]

⟨RRs⟩ ::= ⟨ANCOUNT⟩⟨NSCOUNT⟩⟨ARCOUNT⟩
⟨ANCOUNT⟩ ::= 0 | 1 | 2 | 3 | 4 | 5
⟨NSCOUNT⟩ ::= 0 | 1 | 2 | 3 | 4 | 5
⟨ARCOUNT⟩ ::= 0 | 1 | 2 | 3 | 4 | 5

⟨Answer⟩ ::= "" | ⟨Record⟩ | ⟨Record⟩*2 | ⟨Record⟩*3 | ⟨
Record⟩*4 | ⟨Record⟩*5

⟨Authority⟩ ::= "" | ⟨Record⟩ | ⟨Record⟩*2 | ⟨Record⟩*3
| ⟨Record⟩*4 | ⟨Record⟩*5

⟨Additional⟩ ::= "" | ⟨Record⟩ | ⟨Record⟩*2 | ⟨Record⟩
*3 | ⟨Record⟩*4 | ⟨Record⟩*5

⟨Record⟩ ::= ⟨NAME⟩⟨TYPE⟩⟨CLASS⟩⟨TTL⟩⟨RDLENGTH⟩⟨RDATA⟩
⟨NAME⟩ ::= (domain queried)[.2] |

(sub-domain)[.2] |
(same-level domain)[.2] |
(parent domain)[.2] |
(unrelated domain)[.2]

⟨TYPE⟩ ::= (TYPE queried)[.50] | A[.05] | CNAME[.05] | SOA
[.05] | PTR[.05] | MX[.05] | TXT[.05] | AAAA[.05] |
RRSIG[.05] | SPF[.05]

⟨CLASS⟩ ::= IN
⟨TTL⟩ ::= 60
⟨RDLENGTH⟩ ::= (length of ⟨RDATA⟩)[.90] | (random value

in [length, 2*length])[.05] | (random value in [0,
length])[.05]

⟨RDATA⟩ ::= (randomly generated data decided by ⟨TYPE⟩)

Listing 2: PCFG for DNS response.

D Pseudocode for Input Generation

Algorithm 1 shows the pseudo-code of RESOLVERFUZZ’s
test generator.

E Example Self-defined Cache Structure

List 3 shows an example of a self-defined cache structure.

{
".": [

{
"name": ".",
"class": "IN",
"type": "NS",
"ttl": "518400",
"rdata": "a.root -servers.net."
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Algorithm 1: Logic of input generator.
1 function input_generator (base_qname);

Input :A domain as base qname for mutation base_qname
Output :A DNS query packet query from client,

A DNS response from upstream,
2 query← Base_query /* basic structure of DNS query. */
3 response← Base_response /* basic structure of DNS

response. */
4 for f ield ∈

[T XID,QR,OPcode,AA,TC,RD,RA,Z,AD,CD,RCODE
,QDCOUNT,ANCOUNT,NSCOUNT,ARCOUNT ] do

5 Set f ield in query with a generated value from PCFG grammar
6 Set f ield in response with a generated value from PCFG

grammar

7 for f ield ∈ QD do
8 Set f ield in query with generated records of the number of

QDCOUNT .

9 for f ield ∈ [AN,NS,AR] do
10 Set f ield in response with generated records of the number of

corresponding counts.

11 if random(0,1)> 0.9 then
12 Add, delete, or replace some characters in some parts of

generated query and response.

13 return query, response

}
],
"a.root -servers.net.": [

{
"name": "a.root -servers.net.",
"class": "IN",
"type": "A",
"ttl": "518400",
"rdata": "198.41.0.4"

}
]

}

Listing 3: Example of self-defined cache structure.

F Example Cache Dump Results

List 4, 5, 6, 7 present the example cache dump results of
BIND, Unbound, PowerDNS, and Technitium.

; Start view _default
; Cache dump of view ’_default ’ (cache _default)
;
; using a 0 second stale ttl
$DATE 20220708100109
; authanswer
. 518399 IN NS a.root -servers.net.

518399 IN NS b.root -servers.net.
; glue
app. 172799 NS ns-tld1.

charlestonroadregistry.com.
172799 NS ns-tld2.

charlestonroadregistry.com.
; additional

86399 DS 23684 8 2 (
3A5CC8A31E02C94ABA6461912FABB7E9F5E3
4957 BB6114A55A864D96AEC31836 )

(truncated)
; Address database dump
;
; [edns success/timeout]
; [plain success/timeout]
;
; a.gtld -servers.net [v4 TTL 9] [v6 TTL 9] [v4

success] [v6 success]
; 192.5.6.30 [srtt 25] [flags 00000000] [

edns 0/0] [plain 0/0] [ttl 1799]
; 2001:503:a83e::2:30 [srtt 39310] [flags

00000000] [edns 0/4] [plain 0/0] [ttl 1799]

Listing 4: Example of cache dump result of BIND.

START_RRSET_CACHE
;rrset 86398 13 1 8 0
. 86398 IN NS j.root -servers.net.
. 86398 IN NS e.root -servers.net.
. 86398 IN NS h.root -servers.net.
(truncated)
;rrset 86398 1 1 2 0
CK0POJMG874LJREF7EFN8430QVIT8BSM.com. 86398 IN

NSEC3 1 1 0 - ck0q2d6ni4i7eqh8na30ns61o48ul8g5
NS SOA RRSIG DNSKEY NSEC3PARAM ;{flags:

optout}
CK0POJMG874LJREF7EFN8430QVIT8BSM.com. 86398 IN

RRSIG NSEC3 8 2 86400 20220827042408
20220820031408 32298 com.
DtbwR2L5wFUarqJkJIZuhJi03Kf +24qeQsxH0OZRKQED
QMP9HAojgZWCx0UstF6MpmLu1ksizKkG35LexZQOqt3C
2168 e5tMVpNaXmcAfL7ZZMXB9M/pf2ngxyiVzRkMQ8cW
31nYQYGrAqgiE0fYgfp99fIvxmlWghanFpGeCnPKZF15
4TdIjMmlCdzc6cvodgw1iY4cYYKxWyo5+t81pw==
;{id = 32298}

END_RRSET_CACHE
START_MSG_CACHE
msg . IN NS 32896 1 86398 0 1 0 26
. IN NS 0
m.root -servers.net. IN A 0
l.root -servers.net. IN A 0
k.root -servers.net. IN A 0
END_MSG_CACHE
EOF

Listing 5: Example of cache dump result of Unbound.

; main record cache dump follows
;
c.root -servers.net. 86400 86395 IN AAAA

2001:500:2::c ; (Indeterminate) auth=0 zone=.
from =198.97.190.53

c.root -servers.net. 86400 86395 IN A 192.33.4.12 ;
(Indeterminate) auth=0 zone=. from

=198.97.190.53
com. 86400 86395 IN NS a.gtld -servers.net. ; (

Indeterminate) auth=0 zone=. from =193.0.14.129
net. 86400 86395 IN NS i.gtld -servers.net. ; (

Indeterminate) auth=1 zone=net from
=192.35.51.30

m.gtld -servers.net. 86400 86395 IN A 192.55.83.30
; (Indeterminate) auth=0 zone=. from
=193.0.14.129

; negcache dump follows
;
secpoll.powerdns.com. 3595 IN A VIA secpoll.

powerdns.com. ; (Indeterminate)

21



; main packet cache dump from thread follows

Listing 6: Example of cache dump result of PowerDNS.

{
"com": [

{
"name": "com",
"type": "NS",
"ttl": "172800 (2 days)",
"rData": {

"nameServer": "a.gtld -servers.net
",

"parentSideTtl": "86400 (1 day)"
},
"glueRecords": "192.5.6.30 , 2001:503:

a83e::2:30",
"dnssecStatus": "Disabled",
"lastUsedOn": "2023-01-23T17

:51:38.320631Z"
}

],
"stephane.ns.cloudflare.com": [

{
"name": "stephane.ns.cloudflare.com",
"type": "A",
"ttl": "86353 (23 hours 59 mins 13 sec

)",
"rData": {

"ipAddress": "108.162.194.112"
},
"dnssecStatus": "Disabled",
"lastUsedOn": "2023-01-23T17

:51:38.3435062Z"
},

],
}

Listing 7: Example of cache dump result of Technitium.

G Clustering Results from Cache Oracle

Table 5 shows the distribution of bugs and differences in the
clusters for the cache oracle.

H Large-scale Resolver Scanning

The vulnerabilities identified by RESOLVERFUZZ persist in
all the studied DNS software (even in their latest versions),
and we are interested in learning the impact if these vulnera-
bilities are exploited in the wild. To this end, we conduct a
large-scale network scanning on open resolvers to discover
the potentially vulnerable ones. We discuss the ethical issues
and how they are addressed in Section 7.
The methodology of scanning. As revealed by [103], the
list of open resolvers that are actively operating is constantly
changing. To obtain an up-to-date list of open resolvers, we
conduct active network scanning using XMap [68]. XMap is a
fast Internet-wide scanner that allows customization of the
probing requests, and we use XMap to send DNS queries from

Table 3: Top 10 regions and AS numbers of the discovered
open resolvers during our scanning.

Region # % ASN # %

China 665,328 36.7% 4134 245,061 13.5%
USA 142,058 7.8% 4837 128,995 7.1%
India 109,436 6.0% 4847 58,465 3.2%

Russia 82,980 4.6% 17488 53,803 3.0%
South Korea 71,193 3.9% 4538 53,043 2.9%

Indonesia 66,809 3.7% 4766 40,297 2.2%
Brazil 51,904 2.9% 4808 37,304 2.1%

Bangladesh 43,059 2.4% 24560 29,830 1.6%
Iran 41,578 2.3% 58224 29,712 1.6%

Taiwan 27,287 1.5% 45090 24,928 1.4%

# Total regions: 229 # Total Ases: 25,342

# Discovered resolvers: 1,815,017

Table 4: Software used by the open resolvers.

Software

Identified resolvers

version.
fpdns Totalbind

BIND 35,987 12,420 48,407 (5.7%)
Unbound 9,447 2,265 11,712 (1.4%)

Knot 43 0 43 (0.0%)
PowerDNS 10,787 749 11,536 (1.4%)

Subtotal 56,264 15,434 71,698 (8.4%)

Others 273,458 503,552 777,010 (91.6%)

Total 329,722 518,986 848,708 (100.0%)

Others: Microsoft DNS, Dnsmasq, public DNS services, etc.

our lab machines to the whole IPv4 address space. Each query
is a UDP packet, issued against port 53, and querying about
our controlled domain names. We consider the IPs replying
with valid responses to be candidates for open resolvers. To
notice, scanning from a few vantage points cannot yield a
complete resolver list. However, this is the common practice
for the measurement studies about Internet services and DNS
resolvers [44, 74, 87, 92].

Due to ethical concerns, we cannot directly test if a resolver
is vulnerable by sending packets generated by our fuzzer (oth-
erwise, we might be considered as attackers by the resolver
operators). Hence, we try to learn the software name of the
open resolver and check if it matches our studied resolvers.
We did not include the software version as we found the
version information is usually not provided by the resolver,
and all our discovered vulnerabilities are effective against the
latest versions.

Specifically, we use both version.bind [11] query and
a DNS fingerprinting tool fpdns [28]. version.bind is
a special DNS query name configured with TXT type and
CHAOS class to display the DNS software information. If
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Table 5: Distribution of bugs and differences (non-bugs) for cache oracle.

Mode Cluster
Bug Non-bug Difference Total # Test

CP1 CP2 CP4 RC2 B1 B2 B3 B4 B5 B6 Difference Cases

C1 0 100 2,663 11,765 11,685 11,765 11,765 11,765 11,476 11,624 11,765

177,446
Recur- C2 0 236 625 22,593 9,213 22,593 22,593 22,593 4,227 9 22,593

sive-only C3 0 114 2,733 0 10,610 10,699 1 10,603 10,063 10,568 10,700
C4 0 253 591 0 8,273 19,158 0 19,155 2,416 19 19,159
C5 0 20 21 0 22,734 4,268 0 1,759 4,565 1,390 38,631

C6 0 121 125 5,938 4,875 0 0 0 1,171 0 8,038

180,000

C7 0 96 97 475 469 0 0 0 181 0 704
C8 0 34 34 0 157 0 0 0 45 0 850

forward C9 0 35 61 5,487 3,143 0 0 0 1,179 0 5,487
-only C10 0 96 111 8,666 5,362 0 0 0 1,841 0 9,259

C11 0 69 85 7,308 4,163 0 0 0 1,571 0 7,308
C12 0 199 199 1,447 1,004 0 0 0 481 0 1,520

C13 1 0 14 4,132 5,842 1,389 6,961 4,299 4,122 1,402 6,962

179,948
CDNS C14 0 4 159 2,014 8,915 0 340 0 4,203 3 11,983
with C15 9 40 109 8,999 24,923 0 27 38,050 13,811 44 39,426

fallback C16 0 1 1 770 1,971 0 0 4,161 714 0 4,318
C17 4 4 6 4,224 5,893 1 8,877 9,521 3,163 14 9,560

C18 2 0 127 17,598 2,964 63 95 63 3,092 0 17,598

181,215
CDNS C19 0 0 95 9,373 6,153 0 0 0 5,101 0 22,954

without C20 0 0 0 1,115 478 0 0 0 255 0 6,280
fallback C21 3 0 0 95 95 31 0 31 63 255 1,498

C22 0 0 0 127 31 0 0 0 0 0 797

Total 19 1,422 7,856 112,126 138,953 69,967 50,659 122,000 73,740 25,328 257,390 718,609

B1: Resolver accepts records matched with queried domain and type, B2: Forward fallback mechanism is triggered,
B3: NSEC3 record is accepted, B4: NSEC record is accepted. B5: Resolver accepts records matched with the queried domain but different types.
B6: Resolver validates glue records in the response. For CP1, CP2, CP4, and RC1, please check Section 6 for details.

version.bind returns nothing, we utilize fpdns to identify
the version. fpdns is maintained by the DNS community and
covers a wide range of DNS version fingerprints, including
mainstream DNS software such as BIND and Unbound.

Results of scanning. Our scanning ran for 5 days in 2022
and we discovered 1,815,017 open DNS resolvers, including
both recursive resolvers and forwarders. We first examined
their geo-location and autonomous system (AS) using the
GeoLite2 database [75]. Table 3 show that the 1.8M resolvers
are located in 229 regions with the top three being China
(36.7%), USA (7.8%), and India (6.0%). 25,342 AS numbers
were associated with these resolvers, showing our list has
broad coverage of resolvers.

Out of the 1.8M resolvers, we identified 848,708 (46.8%)
returning software information to our probing methods of
version.bind (329,722, 38.9%) or fpdns (518,986, 61.1%),
as listed in Table 4. Totally, 71,698 (8.4%) resolvers are
potentially impacted by our discovered vulnerabilities, in-
cluding BIND (48,407), Unbound (11,712), Knot (43), and
PowerDNS (11,536). We did not discover resolvers us-
ing MaraDNS and Technitium since they do not support
the version.bind query or have fingerprints in the fpdns
database. Noticeably, our scanning results give a conservative

estimation of the vulnerable resolvers, due to the limitations
of our probing methods.
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