The Maginot Line: Attacking the Boundary of DNS Caching Protection

Abstract

In this paper, we report MaginotDNS, a powerful cache poisoning attack against DNS servers that simultaneously act as recursive resolvers and forwarders (termed as CDNS). The attack is made possible through exploiting vulnerabilities in the bailiwick checking algorithms, one of the cornerstones of DNS security since the 1990s, and affects multiple versions of popular DNS software, including BIND and Microsoft DNS. Through field tests, we find that the attack is potent, allowing attackers to take over entire DNS zones, even including Top-Level Domains (e.g., .com and .net). Through a large-scale measurement study, we also confirm the extensive usage of CDNSes in real-world networks (up to 41.8% of our probed open DNS servers) and find that at least 35.5% of all CDNSes are vulnerable to MaginotDNS. After interviews with ISPs, we show a wide range of CDNS use cases and real-world attacks. We have reported all the discovered vulnerabilities to DNS software vendors and received acknowledgments from all of them. 3 CVE-ids have been published, and 2 vendors have fixed their software. Our study brings attention to the implementation inconsistency of security checking logic in different DNS software and server modes (i.e., recursive resolvers and forwarders), and we call for standardization and agreements among software vendors.

Publication
In Proceedings of the 32nd USENIX Security Symposium. Anaheim, California, August 9–11, 2023. (Acceptance rate: ??%, Acceptance rate in summer: 82/402=20.4%, Acceptance rate in fall: 89/569=15.6%), Acceptance rate in winter: ??%)

Overview

In this paper, we report MaginotDNS, a powerful cache poisoning attack against DNS servers that simultaneously act as recursive resolvers and forwarders (termed as CDNS).

MaginotDNS: https://maginotdns.net/

CVE (3)

Xiang Li
Xiang Li
Ph.D. Candidate in Cyberspace Security (Tsinghua University)

Xiang Li is a 4th-year Ph.D. candidate at the Institute of Network Science and Cyberspace, Tsinghua University, advised by Professors Qi Li and Haixin Duan. He belongs to the Network and Information Security Lab (NISL). He is a visiting scholar at UC Irvine as a project specialist, working with Professor Zhou Li. He is also working as a security research intern at Qi-An-Xin Technology Company. Additionally, he is the author of the fast IPv6 network device scanner XMap, open-sourced on GitHub. His research interests include network security, protocol security, IPv6 security, DNS security, Internet measurement, and network & protocol fuzzing. As the first author, he has published many research papers at top security conferences like USENIX Security, NDSS, and DSN. As the co-author, he also published multiple papers in top conferences like USENIX Security and SIGMETRICS. He also gets his presentations accepted by top industry security conferences like Black Hat. He likes to attend talks and workshops like IDS, OARC, and VehicleSec to share his research. He has obtained over 140 CVE/CNVD vulnerability numbers for a variety of influential IPv6 and DNS vulnerabilities, which have impacted over 20 home router vendors and all DNS implementations and resolver vendors. He received acknowledgements and more than $10,600 rewards from those vendors, like Google, Microsoft, Cloudflare, and Akamai, and is working for the improvement of DNS protocols (related work has been referenced in RFC).